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Preface 

Reliable access to water, managing the spatial and temporal variability of water availability, 
ensuring the quality of freshwater, and responding to climatological changes in the 
hydrological cycle are prerequisites for the development of countries in Africa. Water, being 
an essential input for biomass growth and for renewable energy production (e.g. biofuels and 
hydropower schemes), plays an integral part in ensuring food and energy security for any 
nation. Water, as a source of safe drinking water, is furthermore the basis for ensuring the 
health of citizens and plays an important role in urban sanitation. In view of the transversal 
importance of water in our society, the United Nations has recently announced a dedicated 
goal on Water and Sanitation as part of the new Sustainable Development Goals (SDG). 
The concept of Integrated Water Resource Management (IWRM) is seen as an opportunity to 
deal with water variability and the wide spread water scarcity in Africa. One key component 
missing from IWRM in Africa is knowledge of the available extent and quality of water 
resources at a basin level. Earth Observation (EO) technology can help fill this information 
gap by assessing and monitoring water resources at adequate temporal and spatial scales.  
The goal of this Special Issue is to understand and demonstrate the contribution that satellite 
observations, consistent over space and time, can bring to improve water resource 
management in Africa. Possible EO products and applications range from catchment 
characterization, water quality monitoring, soil moisture assessment, water extent and level 
monitoring, irrigation services, urban and agricultural water demand modeling, 
evapotranspiration estimation, ground water management, to hydrological modeling and flood 
mapping/forecasting. Some of these EO applications have already been developed by African 
scientists within the ten-year lifetime of the TIGER initiative: Looking after Water in Africa 
(http://www.tiger.esa.int), whose contributions was the starting point of this Special Issue but 
is only one example of the wide range of activities in the field. The total of 22 papers in this 
Special Issue gives access to wide range of expertise from the entire African and international 
scientific community, dealing with the challenges of water resource management in Africa. 
Several papers also addressed the latest developments in terms of new missions (such as the 
Sentinel missions), as well as related EO products and techniques that are now available to 
improve IWRM in Africa. 
 

Benjamin Koetz, Zoltán Vekerdy,  
Massimo Menenti and Diego Fernández-Prieto 

Guest Editors 





 
 

 

 

 

 

Chapter 1:  
Water Resource Management 

  



 
 

 



3 
 

 

Enabling the Use of Earth Observation Data for Integrated 
Water Resource Management in Africa with the Water 
Observation and Information System 

Radoslaw Guzinski, Steve Kass, Silvia Huber, Peter Bauer-Gottwein, Iris Hedegaard Jensen, 
Vahid Naeimi, Marcela Doubkov , Andreas Walli and Christian Tottrup 

Abstract: The Water Observation and Information System (WOIS) is an open source software tool 
for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth 
Observation (EO) data. The WOIS has been developed by, among others, the authors of this paper 
under the TIGER-NET project, which is a major component of the TIGER initiative of the 
European Space Agency (ESA) and whose main goal is to support the African Earth Observation 
Capacity for Water Resource Monitoring. TIGER-NET aims to support the satellite-based 
assessment and monitoring of water resources from watershed to cross-border basin levels through 
the provision of a free and powerful software package, with associated capacity building, to 
African authorities. More than 28 EO data processing solutions for water resource management 
tasks have been developed, in correspondence with the requirements of the participating key 
African water authorities, and demonstrated with dedicated case studies utilizing the software in 
operational scenarios. They cover a wide range of themes and information products, including 
basin-wide characterization of land and water resources, lake water quality monitoring, 
hydrological modeling and flood forecasting and mapping. For each monitoring task, step-by-step 
workflows were developed, which can either be adjusted by the user or largely automatized to feed 
into existing data streams and reporting schemes. The WOIS enables African water authorities to 
fully exploit the increasing EO capacity offered by current and upcoming generations of satellites, 
including the Sentinel missions. 

Reprinted from Remote Sens. Cite as: Guzinski, R.; Kass, S.; Huber, S.; Bauer-Gottwein, P.;  
Jensen, I.H.; Naeimi, V.; Doubkov , M.; Walli, A.; Tottrup, C. Enabling the Use of Earth 
Observation Data for Integrated Water Resource Management in Africa with the Water Observation 
and Information System. Remote Sens. 2014, 6, 7819-7839. 

1. Introduction 

Despite having experienced more than 10 years of continuous economic growth, Africa today 
faces great water resource management challenges. With 10% of the world’s renewable water 
resources, more than 60 trans-boundary basins, a low level of water development and utilization 
and increasing population, Africa’s future economic growth will continue to be constrained by the 
development of its water resources. Today, in many African countries, water policies and 
management decisions are based on sparse and unreliable information. In this challenging context, 
water information systems are fundamental for improving water governance and implementing 
integrated water resource management (IWRM) successfully. This water information gap is a 
major limitation for putting in practice IWRM plans to face the current and coming challenges of 
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the African water sector. Recognizing the utility of satellite data for IWRM, the European Space 
Agency (ESA), through its participation in the Committee on Earth Observation Satellites (CEOS), 
launched the TIGER initiative in 2002 [1]. The TIGER initiative supports water authorities, 
technical centers and other stakeholders in the African water sector to enhance their capacity to 
collect and use water-relevant geo-information to better monitor, assess and inventorize their water 
resources by exploiting Earth Observation (EO) products and services [2]. Currently, the TIGER 
initiative consists mainly of the TIGER Capacity Building Facility (including support for selected 
research projects) and the TIGER-NET project. 

The aim of TIGER-NET is to build a pre-operational capacity for water resources monitoring 
based on EO technologies at mandated African water authorities. The initial key host institutions 
already actively involved in TIGER-NET encompass major river basin authorities (Nile Basin 
Initiative, Lake Chad Basin Commission, Zambezi Watercourse Commission and Volta Basin 
Authority), national ministries and agencies (Department of Water Affairs South Africa; the 
Hydrologic Division of the Namibian Ministry of Agriculture, Water and Forestry; the Department 
of Water Affairs of the Zambian Ministry of Mines, Energy and Water Development; DR Congo 
National Agency of Meteorology and Teledetection by Satellite; Instituto Nacional de 
Meteorologia of Mozambique), as well as international research and humanitarian organizations 
(International Water Management Institute, United Nations World Food program and Action 
Against Hunger). 

The TIGER-NET project builds on the 10 years of experience gained within TIGER 
demonstration and capacity building activities in order to develop practices and tools required for 
an eventual transfer of EO information into the day-to-day work of water authorities. A steering 
committee consisting of experts from the African Water Facility, African Ministers’ Council on 
Water-Technical Advisory Committee (AMCOW-TAC), the Water Research Commission of South 
Africa, United Nations’ Economic Commission for Africa (UN-ECA) and United Nations 
Educational, Scientific and Cultural Organization’s International Hydrological Programme 
(UNESCO IHP), provides guidance with regard to the African water sector priorities. The major 
focus of the project is on developing, demonstrating and training a user-driven, open-source Water 
Observation and Information System (WOIS), which enables the production and application of a 
range of satellite EO-based information products needed for IWRM in Africa. Importantly, one of 
the aims is to develop the necessary local capacity for accessing and exploiting historic satellite 
data, as well as future Sentinel observations [3]. Free data access, free licensing and the ability to 
integrate with existing systems are key advantages of the WOIS, which should enable its extension 
to other countries and regions in Africa and beyond, as well as encourage user-driven sustainability 
in terms of funding and operation. 

Against this background, this paper outlines the development framework of the WOIS software 
to illustrate current features of the system and to review selected application cases demonstrating 
the real impact of the system on enhancing water management and integrated water resource 
management plans in Africa. 
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2. Technical Development and WOIS Design 

2.1. User Driven Design and Development 

The WOIS has been designed in direct response to user requirements, i.e., based on extensive 
consultation, review and analysis of the user needs in terms of their current technological and 
personnel capacity, application-specific monitoring demands, as well as geo-information and 
system needs. In general, the common requirement was for an easy-to-operate, open-source  
end-to-end system enabling a full capacity to establish water-related information for monitoring, 
analysis and reporting (maps, tables and graphs) per sub-watershed for IWRM. While the system 
requirements were found to be very common among the host institutions, the specific application 
requirements and information demands varied according to the variety of IWRM challenges faced 
in the different river basins of Africa. Those applications included mapping and monitoring of lake 
water quality, flood monitoring, land degradation and land cover characterization, water bodies and 
wetlands mapping, hydrological modeling, hydrological characterization (soil moisture, 
precipitation and evapotranspiration), soil erosion potential indicators, as well as urban water 
supply and sanitation planning support. 

The users have also been part of the actual WOIS development, which has followed the agile 
principles for software development in which the developers stay flexible and responsive to the 
latest issues reported by the users [4]. The work has progressed via feedback loops where the 
developers have tackled any outstanding issues, prioritized based on their importance to the users, 
before testing the solutions and integrating them into the software system. At the end of each loop, 
a working product was delivered to the users, who would then provide more feedback to the 
developers. In the case of WOIS software, the initial users were the EO specialists involved in the 
system design and application creation, and later, during the system installation and demonstration, 
the development was driven directly by feedback from the African water management authorities. 

2.2. System Architecture and Functionality 

As no single software package could provide all of the requested functionality, the underlying 
design principle was to develop a system that uses dedicated software for specific tasks and where 
the various software components are integrated into a single graphical user interface (GUI). All of 
the WOIS software components (Figure 1) are based on proven and stable open-source (free) 
software and include: 

• QGIS 2.2 [5]: extensive and user friendly GIS (software website: qgis.org (accessed on 9 
March 2014));  

• GRASS GIS 6.4.3 [6]: modular GIS consisting of raster and vector analysis algorithms 
(software website: grass.osgeo.org (accessed on 9 March 2014));  

• BEAM 5.0 [7]: processing of optical and thermal ESA data products (software website: 
brockmann-consult.de/cms/web/beam (accessed on 9 March 2014));  

• NEST 5.1 [8]: processing of radar ESA data products (software website: earth.esa.int/web/ 
nest/home (accessed on 9 March 2014));  
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• Orfeo Toolbox 4.0.0 [9]: high resolution image processing (software website: orfeo-
toolbox.org (accessed on 9 March 2014));  

• Soil Water Assessment Tool (SWAT) 2.9 [10]: hydrological modeling (software website: 
swat.tamu.edu (accessed on 9 March 2014));  

• R 3.1.0 language scripts [11]: statistical and graphical tools (software website:  
www.r-project.org (accessed on 9 March 2014));  

• PostGIS 2.1.3 [12]: geospatial database (software website: postgis.net (accessed on  
9 March 2014)). 

Figure 1. Open-source software packages integrated as part of the Water Observation 
and Information System (WOIS). 

 

In addition, Python scripts [13] were used for automating certain tasks and integrating the 
different software. WOIS combines full versions of the component software into a multipurpose 
system consisting of a storage container for the geodata, extraction and processing of the EO data 
through customized processing facilities and integrative tools and models aimed at decision 
support, e.g., hydrological modeling and GIS-embedded visualization and analysis tools. 

Selected examples of generic WOIS capabilities are georeferencing, reprojection and 
radiometric calibration of optical and SAR data obtained by (among others) MERIS and ASAR 
sensors onboard the Envisat satellite and the SAR sensor onboard the RADARSAT-2 satellite, 
terrain analysis, image classification and change detection, time-series analysis, interactive data 
exploration and export (tables and graphs), map composing and 3D visualization. WOIS also 
provides a hydrological modeling framework for scenario-based model development and 
operational simulation and forecasting. Furthermore, a PostGIS database enables centralized or 
distributed storage of vector data, while a library of import/export functions ensures the ability to 
integrate and/or connect to external IT infrastructures and databases. 

There are no minimum system requirements for using WOIS, and the system performance 
depends on the size of the raster and vector data sets that are to be analyzed and the computational 
complexity of the analysis tasks to be performed. Therefore, for optimal performance it is 
recommended for the host computer to have at least an Intel Core i5-3570 processor, 8 GB of 
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RAM, 1 TB of hard disk space and to be running Windows 7 (64 bit) or higher. However, WOIS 
has been successfully installed and operated on 32- and 64-bit computers falling far below the 
above specifications, with Windows versions ranging from XP to 8. 

2.3. Component Integration 

QGIS was chosen as the central integrating platform, due to its clear and accessible GUI, strong 
development community, ease of implementing additional functionalities through Python plugins 
and its high level of interoperability with major GIS data formats through the use of the Geospatial 
Data Abstraction Library (GDAL/OGR) library [14]. Moreover, the integrated Processing toolbox, 
formerly known as SEXTANTE [15], brings the ability to easily incorporate geoprocessing 
algorithms from various applications into QGIS. It acts as a joint repository for a wide range of 
algorithms, some native to QGIS and others imported from external applications, such as GRASS 
or the Orfeo Toolbox. It also allows for easy incorporation of R and Python scripts. The algorithms 
included in the Processing toolbox integrate seamlessly with the QGIS capabilities of data I/O, 
rendering or map creation. 

The Processing toolbox is based on modular architecture with limited core functionality and the 
ability to easily add geoalgorithms from different applications through provider modules. The core 
functionality is responsible for, for example, data passing to and from QGIS or automatic GUI 
creation for each algorithm. The provider modules take care of exposing the algorithms to the 
toolbox, communicating with the external applications and setting up the correct environment for 
algorithm execution. The external communication is mostly performed through command  
line-based instructions, although it is also possible to engage the external applications through their 
Python bindings. 

The Processing toolbox already included modules linking with many of the WOIS software 
components. However, an algorithm provider for BEAM and the Next ESA SAR Toolbox (NEST) 
had to be developed as an additional QGIS plugin. Since NEST is built on top of BEAM’s core 
libraries, it was possible to create a common provider for the two applications. The communication 
with BEAM and NEST is performed through the Graph Processing Framework (GPF), which takes 
care of low level issues, such as efficient data input and output or multi-threading. The GPF can be 
called on a command line, and through passing of an XML file a chosen operator can be executed 
with the given settings. Since the toolboxes for the upcoming Sentinel missions will be based on 
BEAM and NEST [16,17], the use of GPF ensures an easy implementation path for Sentinel 
algorithms into WOIS. 

Similarly, a QGIS plugin was developed for incorporating SWAT modeling inside QGIS 
processing. The plugin has functionality for setting up and calibrating SWAT models, acquiring 
climate data from outside sources, running the models, assimilating observations and plotting  
the results. 
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2.4. Processing Workflows 

One of the features of the QGIS Processing toolbox is the modeler functionality, which enables  
the creation of models combining any of the algorithms present in the toolbox. The modeler comes 
with an easy to use drag and drop GUI, making it possible to quickly create advanced processing 
models. A similar functionality was developed as part of WOIS inside a new QGIS plugin, to 
enable the creation of processing workflows through an easy to use GUI. 

Figure 2. The WOIS graphical user interface, including the embedded workflow library 
(center) and wizard-based processing workflow (right). 

 

The workflows transparently combine algorithms from the different providers and guide the 
users with wizard-like, step-by-step instructions through the available processing chains. They are 
intended for novice and intermediate users, as an introduction to the theory and practice of using 
EO data for various tasks related to their field of interest. Therefore, they were designed to be used 
with minimal technical skills, although in some cases, expert local knowledge or GIS/modelling 
experience is still required. The workflows are accessible from the WOIS toolbox, which is 
available through the QGIS GUI (Figure 2) and functions as a workflow library. More advanced 
users may choose to explore the full suite of algorithms and tools available from the Processing 
toolbox in order to create their own workflows or models. 

3. Water Resource Applications 

The operational and practical use of the WOIS to support IWRM in Africa has been 
demonstrated via a series of user-specific demonstration cases, some of which are described in this 
section and summarized in Table 1 [18–20]. They show the depth and versatility of WOIS for 
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performing numerous tasks related to water resource management and the advantages of combining 
the capabilities of the different WOIS component software. 

The demonstration cases had several stages. First, customized end-to-end processing workflows 
were developed for the requested use cases. The developed workflows were subsequently used for 
product derivation over significant areas and time periods, as requested by the users. Continental-
scale products at 1–25 km resolution are already provided on an operational basis. In addition,  
trans-boundary products at 150–500 m covering in total over 17,000,000 km2, basin-scale products 
at 2.5–30 m covering in total around 120,000 km2 and local-scale products at 0.5–2.5 m covering in 
total some 300 km2 were demonstrated with the WOIS to date on a number of African subsets 
chosen by the participating host institutions. The final step involved the testing of the workflows’ 
stability/performance and ease of use, as well as evaluating the validity and usefulness of the 
outcome products in close dialogue with the users. 

Table 1. Summary of the WOIS demonstration cases described in this paper. 

Name Key Output Variables 
Region of 

Application 
Accuracy/Performance Limitations 

Required User 

Skills 

Large lakes water 

quality and 

temperature 

monitoring 

Water surface 

temperature, chlorophyll 

concentration, 

suspended sediments 

concentration. 

Lake 

Victoria, 

Lake Chad 

Spatiotemporal variation in 

accordance with expected 

patterns. MODIS-derived water 

quality is of lesser accuracy. 

Works on medium to 

coarse resolution 

data, so not 

applicable to small 

lakes. Operational 

use dependent on 

Sentinel 3. 

Minimal. 

Medium 

resolution  

full-basin 

characterization 

Land cover/use maps 

and change statistics. 

Volta Basin, 

Lake Chad 

area 

Overall accuracy of 80%. 

Kappa coefficient exceeding 

0.7. 

Designed for 

medium and coarse 

resolution data, so 

cannot resolve small-

scale changes. 

Minimal technical 

skills. Expert local 

knowledge needed  

for 

selection/labelling  

of classes. 

Medium 

resolution land 

degradation index 

Maps of areas with 

rainfall-independent, 

statistically-significant 

vegetation change. 

Volta Basin, 

Lake Chad 

area 

Vegetation trends were 

confirmed by local experts and 

other studies [18]. 

Applicable in  

rainfall limited 

ecosystems only. 

Minimal. 

Hydrological 

characterization 

Historic and  

real-time precipitation, 

evapotranspiration. 

Whole of 

Africa 

Uses well-established datasets 

with documented accuracy 

[19,20]. 

Coarse spatial 

resolution. 
Minimal. 

High resolution 

basin 

characterization 

Land cover/use maps. 

Lake Chad 

area,  

South Africa, 

Namibia, 

Zambia. 

Overall accuracy above 80%. 

Kappa coefficient exceeding 

0.8. 

Requires expert local 

knowledge or 

reference data. 

Intermediate 

technical skills. 

Expert local 

knowledge needed  

for 

selection/labelling  

of classes. 
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Table 1. Cont. 

Name Key Output Variables 
Region of 

Application 
Accuracy/Performance Limitations 

Required User 

Skills 

Water body 

mapping 
Water extent mask. 

Volta Basin, Lake 

Chad area, 

Zambia 

Overall accuracy above 

90%. Kappa coefficient 

exceeding 0.8. 

Requires NIR and 

SWIR spectral 

information. 

Intermediate 

technical skills. 

Hydrological 

modelling 

River discharge 

forecasts. 

Kavango, Mokolo, 

Volta and 

Zambezi basins 

Nash-Sutcliffe 

efficiency of  

0.96 for 1-day forecast, 

0.77 for 7-day forecast. 

Requires field 

measurements of 

discharge for model 

calibration. 

Advanced technical 

skills for model 

setup. Minimal 

technical skills for 

operational 

forecasting. 

Flood mapping 

Historical and  

real-time  

flood maps. 

Nile basin in 

Sudan and Lake 

Chad basin 

Overall accuracy of 0.95 

to 0.99. Kappa 

coefficient between 0.64 

and 0.75. 

Lower accuracy in 

rough water surfaces, 

areas with partially 

submerged vegetation 

or desert regions. 

Minimal 

The following sections review five application cases in order to illustrate the use of WOIS for 
various tasks related to water resource management: monitoring of lake water quality, basin-wide 
land and hydrological characterization, high-resolution land and water characterization, 
hydrological modeling and flood monitoring. 

3.1. Large Lakes Water Quality Monitoring 

The provision of clean fresh water is a serious environmental challenge, and optical remote 
sensing has become an increasingly important tool for monitoring water quality on a regular basis. 
Therefore, WOIS provides workflows for estimating operational and historical, satellite-derived, 
water quality monitoring products for major lakes in Africa (Figure 3). The products can be used 
for, e.g., potential identification of point sources of pollution, the establishment of possible 
correlations with regular cholera outbreaks, better understanding of eutrophication processes and 
regular reporting obligations. 

Under TIGER-NET, monitoring information about water quality and temperature is provided for 
Lake Chad and Lake Victoria using Envisat MERIS and AATSR (historic information) and 
MODIS AQUA (current information). Envisat data are processed using WOIS-embedded BEAM 
functionalities, including the eutrophic lakes processor, to derive water quality parameters (e.g., 
concentrations of chlorophyll and total suspended matter) from MERIS [21], and the Sea Surface 
Temperature (SST) processor, to obtain surface water temperature from AATSR data. Due to the 
failure of Envisat satellite in April 2012, the MODIS sensor on the AQUA satellite is being 
temporarily used for operational lake water quality and temperature observations. The MODIS data 
are processed by the TIGER-NET consortium using the L2 data processors available in SeaWiFS 
Data Analysis System (SeaDAS) [22] and then delivered to the WOIS database. 
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Figure 3. An example product from the WOIS workflow for monitoring lake water quality. 

 

The validation of the water quality and temperature products has shown spatiotemporal variation 
in accordance with expected patterns. Especially the seasonal variation in lake surface temperature 
over both lakes is well captured in both historical and operational mode, hence underpinning the 
strong similarity of AATSR and MODIS AQUA temperature products. For the water quality 
products, the outcome is more ambiguous, as it depends on the performance of the processor for the 
specific lake. Looking past the extreme cases, the MERIS-derived concentrations of chlorophyll 
and total suspended matter exhibit spatial and temporal consistency with absolute values residing 
within the range of published numbers for both Lake Chad and Lake Victoria. The operational 
MODIS outputs show spatiotemporal patterns similar to the MERIS outputs over Lake Victoria, yet 
the output values are an order of magnitude lower, while the operational delivery of water quality 
products over Lake Chad is either impossible or inconsistent at best. The divergence between the 
two data sources is explained by the calibration range of the input algorithm for MODIS, which is 
designed for ocean color mapping and, thus, not ideal for inland lakes. The situation is expected to 
be rectified in the future, where data from the Sentinel 3 mission (expected to launch in 2015)  
will be used for the provision of water quality monitoring information through dedicated  
WOIS workflows. 
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3.2. Basin-Wide Characterization of Land and Water Resources 

The basin-wide assessment and monitoring of hydrological system components and their 
interactions is very important for water resource management. Such components include  
large-scale land use changes, as well as regional precipitation, evapotranspiration and soil moisture 
estimates (including soil water index products), all of which are important for basin hydrology 
(e.g., by impacting runoff, streamflow or water availability) and for the current and future 
utilization potential of the land. 

The WOIS includes six workflows, based mostly on the Orfeo Toolbox functionality, for  
basin-wide land use characterization and change detection analysis. For example, basin-wide land 
cover and land use maps can be derived from medium resolution imagery using either the 
supervised support vector machine [23] or the unsupervised k-means classifiers (Figure 4). Spectral 
changes between multi-temporal imagery can be analyzed using simple change detection 
algorithms, such as image differencing, as well as more advanced techniques, such as multivariate 
alteration detection and the maximum autocorrelation factor [24]. Thematic changes can be 
reported using a post-classification workflow, which returns the cross-tabulation of two input 
classification maps. 

Figure 4. Recent land cover map of the Volta Basin derived using WOIS workflows for 
land cover mapping. 
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Basin-wide land degradation mapping can also be performed using a WOIS-embedded 
workflow. The WOIS implementation of the mapping method for land degradation uses mostly 
GRASS modules, with additional Python scripts to facilitate the processing of time-series data 
according to principles put forward in Huber et al. (2011) [25] and Hellden and Tottrup (2008) [26]. 
The workflow ingests gap-filled time series of NDVI (as a proxy for vegetation biomass [27]) and 
rainfall estimates in order to analyze vegetation/rainfall correlations and to control NDVI trends for 
variability in rainfall. NDVI residual time series, originating from regressing NDVI on rainfall, is 
subsequently searched for significant long-term trends in vegetation productivity, which is not 
related to rainfall, but possibly contributable to humans (e.g., population growth, changing land use 
practices, deforestation, infrastructure developments, as well as rural exodus and urbanization). 
Full basin assessments of land cover and land use changes, as well as land degradation processes 
have been successfully demonstrated for Lake Chad and Volta Basin using medium resolution 
imagery from MODIS and SPOT VGT. When evaluated against higher resolution imagery (e.g., 
Landsat and Google Earth), the overall accuracy of the land cover/land use products was assessed 
to be around 80%, with a kappa coefficient of agreement exceeding 0.7. High resolution imagery 
also supported the validation of the land degradation analysis, yet the causes behind the observed 
vegetation trends are often manifold, and hence, local experts were consulted to verify and give 
reasons for distinctive negative or positive vegetation trends. The local experts were able to explain 
most of the negative vegetation trends with urbanization, dam constructions and deforestation, 
while positive vegetation trends were mostly associated with protected areas and irrigated lands. A 
particular interesting trend pattern was observed along the border area of Chad and Sudan. Here, 
large areas with strong positive vegetation trends appear on the Sudanese side, while pockets of 
negative vegetation trends are spotted on the Chad side. The reasoning behind this pattern is 
explained by population displacement as a consequence of the conflict in Darfur (Figure 5) and as 
corroborated by other studies [18]. 

The WOIS workflows for basin-wide land characterizations have proved useful for the provision 
of ground cover information needed for water resource management and planning, as well as 
establishing the baseline information from which monitoring activities can be performed. Still, the 
workflows are designed for being used with medium to coarse resolution data, and hence, both land 
cover transitions and land cover changes may be obscured by the resolving power of the data. 
Results should therefore not be interpreted as undeniable facts and the area measurements provided 
certainly not perceived as accurate, but they do indicate a trend that is likely to be real and most 
likely in the right order of magnitude. 

Contrary to the land characterization products, which are the result of dedicated image 
processing workflows, the integration of the hydrological characterization products into the WOIS 
database is mainly based on facilitating linkages to external data providers. For example, the  
near-real-time rainfall data product is downloaded directly from the NOAA Climate Prediction 
Center [19] (http://nomads.ncep.noaa.gov/ (accessed on 10 June 2014)) through a WOIS workflow, 
which also allows the user to calculate accumulated rainfall or subset the downloaded images, 
while the Land Surface Analysis Satellite Applications Facility (LSA-SAF) evapotranspiration 
product [20] (http://landsaf.meteo.pt/algorithms.jsp?seltab=7&starttab=7 (accessed on 10 June 
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2014)) is first preprocessed (subsetted and reprojected) by the TIGER-NET consortium before being 
made available on the TIGER-NET FTP server. All hydrological characterization products have Pan-
African coverage and, hence, are available to all users who can download the products using a 
WOIS-embedded workflow. 

Figure 5. Land degradation in Eastern Chad caused by the war in Sudan’s Darfur 
region. Since 2003, over 3000 villages have been destroyed and hundreds of thousands 
of people have been displaced into refugee camps in neighboring Chad. These areas are 
clearly visible in satellite data, as growing camp sites and use of natural resources have 
caused a vegetation decline. On the other hand, the Sudan side shows signs of 
vegetation greening caused by agricultural land abandonment as forced by the 
population displacement. 

 

3.3. High Resolution Land and Water Characterization 

Mapping land cover at the sub-basin level with high resolution (5–20 m pixel size) EO 
observations has many practical applications in water management and water resource accounting. 
Those applications include tracking seasonal and long-term land cover changes (disappearance of 
vegetation, change of mining or cropland areas), observing the capacity and location of small water 
bodies and delineating lake shorelines and wetlands. From the regional water demand perspective, 
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accurate mapping of “cultivated areas” (irrigated and non-irrigated) and “urban areas” (residential 
and commercial/industrial) was deemed of high importance by the participating water authorities. 

The methodology implemented in the relevant WOIS workflows follows an automated, hybrid 
pixel- and object-based EO image classification approach, based on the multi-spectral and spatial 
properties of the satellite imagery, followed by stringent post-processing rules for refinement of the 
results. As the main pixel-based approach, an unsupervised k-means classification method was  
selected [28]. The segment-based classification process consists of two steps: image segmentation 
and classification, both controlled by a dedicated rule set aimed at being as simple as possible to 
ease method transfer to other regions, but as complex as necessary for the desired results [29]. The 
outputs of the two approaches were fused, based on spatial statistics per land cover type, thus 
combining the advantages of both classification methods. The workflows allow the possibility of 
including point sampling data in the processing chain, thus ensuring the participation of local 
experts during the production and validation phases. 

The WOIS high resolution land and water mapping tools were so far successfully implemented 
for seasonal small water body mapping in the Volta Basin and for mapping water demand-related 
land cover changes in sub-basins of South Africa. They are currently being implemented for, 
among others, flood vulnerability mapping in Namibia, as well as for dam monitoring in sub-basins 
of Zambia. The system components have further been employed by the Lake Chad Basin 
Commission for assessing in detail the historic changes of the Lake Chad area extent (Figure 6) and 
its surrounding basin land cover changes, documented in the first Lake Chad Biannual 
Environmental Report. The historic water area extent has been estimated for a number of selected 
years (Figure 6a) from the maximum water extent derived from a composite of high resolution 
images for each year, taken predominantly during the dry season (Figure 6b). It has been shown 
that despite the significant decrease of Lake Chad in the 1980s, the area of water bodies has nearly 
doubled from 1986 to 2011, resulting in a significant change in vegetation cover and land use in the 
basin originally occupied by the lake. The results are directly employed to control and evaluate 
water management regulations in the basin. 

High resolution land cover characterization remains challenging, and the provided tools do not 
compensate for good user skills regarding image interpretation and classification. The tools provide 
instruments to derive and characterize, leaving it up to the user to choose the best fitting method 
and combination in order to achieve adequate results. 

3.4. Hydrological Modeling Framework for Real-Time Water Discharge and Flood Forecasting 

Hydrological models (HMs) are key decision support tools for integrated water resources 
management. HMs are quantitative computer simulation engines used to reproduce and analyze the 
interactions of all relevant hydrological processes and water users in a river basin. They provide 
answers to “what-if” questions, both in the context of long-term planning and real-time operational 
management decisions. Long-term planning problems arise because land-use practices, water 
demands and water-related risks are constantly changing over time. Moreover, as a consequence of 
global climate and land use changes, the probability distributions for many hydrological variables 
are starting to change (e.g., [30]). Real-time management problems arise because of the occurrence 
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of extreme hydrological events. The optimal response to such extreme events depends on the actual 
state of the hydrological system, and real-time information on the system state is thus essential. 

Figure 6. (a) Lake Chad historic water extent (indicated in blue) as determined using 
WOIS. The numbers in brackets on top of each image indicate the months of 
acquisition of high resolution images used for deriving the water extent for a given 
year. For the extent in year 2011, images from 2011 and 2012 were used. (b) Area 
statistics of Lake Chad historic water extent shown in (a). The grey bar indicates water 
area in km2 (left axis) with the percentage above each bar showing the size of the area 
relative to year 1973. Red diamonds and blue dots indicate the number of images in dry 
and wet seasons, respectively, used to estimate the water extent in a given year (right 
axis). Note that images from 2012 were used for estimating water extent in 2011.  

 
(a) 
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Figure 6. Cont. 

 
(b) 

In the context of real-time operational water resources management, data assimilation (DA) has 
become the state-of-the-art technique to merge model predictions with the latest available data 
from a variety of sensors, including in situ and satellite-borne instruments. Assimilation of in situ 
data has become standard practice in most operational flood forecasting models (e.g., [31]). Many 
operational hydrological forecasting systems use variants of the Kalman filter [32] for data 
assimilation. In particular, the extended Kalman filter (EKF, [33]) and the ensemble Kalman  
filter (EnKF, [34]) are widely used in hydrological applications, since they are suitable for  
non-linear problems. 

The HM implemented in the WOIS is the SWAT model, which is an open-source, physically-
based, semi-distributed hydrological model developed and maintained by the U.S. Department of 
Agriculture [35]. SWAT hydrological response is not computed on grid cells, but instead on 
variably sized hydrological response units (HRU), which are portions of the sub-basins having 
unique combinations of slope, land cover and soil type. WOIS SWAT models are parameterized 
with global elevation, land-cover and soil type datasets and are forced with climate data from 
European Centre for Medium-Range Weather Forecasts (ECMWF) [36], Famine Early Warning 
Systems Network-Rainfall Estimate (FEWS-RFE) [37] or National Oceanic and Atmospheric 
Administration-Global Forecast System (NOAA-GFS) [38]. Automatic SWAT model calibration is 
performed with the public-domain software, PEST [39,40]. PEST provides a local gradient search 
algorithm, as well as a shuffled complex evolution algorithm for global search. 
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Figure 7. Example river discharge seven-day forecast for low flow conditions (top 
right) and high flow condition (bottom right) for the station Rundu on the Kavango 
River in Namibia, issued for October and March 2009 respectively. The solid green line 
is the central model forecast, and the green shaded area is the confidence interval of the 
forecast. Red dots are assimilated observations, and blue dots are daily observations 
after the issue date of the forecast.  

 

The WOIS operational forecasting approach (Figure 7) uses the EKF to assimilate water 
discharge measurements from any available monitoring stations into the SWAT hydrological 
model and is driven by NOAA-GFS eight-day ahead atmospheric forecasts. The approach is 
presented in detail in [41]. The set-up and calibration of WOIS SWAT models for a number of case 
study basins are documented in [42–44]. The WOIS operational forecasting approach has been 
implemented for the Kavango and Mokolo basins and is presently being implemented for the Volta 
and Zambezi basins. Daily Kavango forecasts are used operationally by the Namibian Ministry of 
Agriculture, Water and Forestry. In Kavango, forecast skill ranges from a Nash-Sutcliffe efficiency 
(NSE) of 0.96 for the one-day horizon to 0.77 for the seven-day horizon. The quality of the 
precipitation forcing product has the most significant impact on forecast skill. Key assumptions in 
the forecasting system are related to the representation of modeling and observation errors. 

3.5. Historic and Real-Time Flood Mapping and Monitoring 

With a constantly increasing density of population, flood-related economic and social risks 
increase. The monitoring of floods using data from synthetic aperture radar (SAR) has been 
exploited during the last thirty years and has proven to be well suited for understanding the  
spatio-temporal flood characteristics. The major advantage of using SAR compared to optical and 
infrared imagery lies in its ability to penetrate clouds and vegetation cover. In addition, it presents a 
significant improvement in spatial resolution when compared to coarse resolution microwave 
products (i.e., ASCAT, AMSR-E, SMOS). 
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The flood mapping methodology used in the WOIS uses primarily ASAR Wide Swath  
(WS) mode data at 150-m resolution for historic flood mapping and RADARSAT imagery for 
near-real-time flood mapping. The methodology workflow consists of pre-processing, classification 
and post-processing steps. In the pre-processing step, precise orbit vectors and range-Doppler 
terrain correction are applied to obtain a georeferenced SAR image. The classification module of 
the WOIS workflow relies on the specular reflection properties of calm water surfaces, which 
appear dark in the resulting SAR imagery. Within the WOIS, both an automatic and a manual 
thresholding approach are implemented. In the case of manual thresholding, the user can plot the 
histogram of the SAR image reflectance, which helps to determine a suitable threshold value. The 
automatic thresholding comprises a combination of image tiling inspired by Martinis et al. [45] and 
Otsu’s histogram thresholding method [46]. Finally, to mask out areas that are not prone to 
flooding and to remove pixels falsely classified as water due to topography-induced radar shadows, 
the Height Above Nearest Drainage (HAND) [47] index is used, which consists of the relative 
height of a cell in the digital elevation model (DEM) w.r.t. the closest DEM cell pertaining to the 
drainage network. The distance to the drainage network is measured along the flow lines of water in 
the DEM. The HAND index was based on the HYDROSHEDS database [48]. 

The demonstration cases for the historical flood mapping in the TIGER-NET project were the 
southern Nile Basin (NB) in Sudan and the Lake Chad Basin (LCB). The total accuracy of the 
derived product when compared with water maps derived from the NDVI-NDWI indices retrieved 
from LANDSAT-7 imagery were 0.95 and 0.99 over Sudan and Chad, respectively. The kappa 
coefficients for the validated scenes were on average 0.75 in the NB and 0.64 in the LCB 
demonstration case. As an example, Figure 8 shows a significant flood event near Khartoum city 
along the Nile River and surroundings captured by ASAR on 20 August 2006. Figure 8, right, 
illustrates the flood scene extracted from the Landsat-7 acquisition from the day before. According 
to the reports, the flood started at the beginning of August, due to heavy rain, and increased to a 
large-scale emergency by August 25. Twenty seven people were killed, and about 10,000 houses 
were damaged [49,50]. 

It was found that the accuracy of the final products deteriorates with roughening of the water 
surface or with partially submerged vegetation. Furthermore, in the desert regions, the low 
differences in backscatter levels between bare ground and water surfaces may exert risks on the 
quality of the final flood product. 
  



20 
 

 

Figure 8. Northeast of Khartoum city, Sudan. Comparison of the ASAR flood map 
from 20 August 2006, with the Landsat-7 ETM+ water map produced by thresholding 
of the NDWI-NDVI index from 19 August 2006. 

 

4. Outlook and Conclusions 

Current water management practices in Africa are hampered by sparse and unreliable 
information on water resource availability. The Water Observation and Information System 
(WOIS) was created to support African institutions in improving their Integrated Water Resource 
Management (IWRM) by exploiting the advantages of Earth observation (EO) technology. The 
WOIS has been designed and developed as a user-friendly, yet powerful multipurpose system 
supporting the full range of EO products and models needed for assessing, monitoring and 
inventorying water resources from sub-catchment to river basin levels. It contains over  
40 workflows to guide the less experienced users through EO data processing and GIS analysis in 
order to derive products required for IWRM. The validity and accuracy of those products has been 
assessed through numerous demonstration cases. For example, medium resolution land cover maps 
derived with WOIS have been shown to have a kappa coefficient above 0.7; high resolution  
water body mapping achieved kappa exceeding 0.8; and SAR-derived flood maps reached an 
overall accuracy of 0.95 to 0.99, while hydrological modeling resulted in forecast skill with  
a Nash–Sutcliffe efficiency of 0.77 for a seven-day forecast. 

The development of the WOIS represents a successful example of a user-driven and 
collaborative development model, where functionalities have been designed, developed and 
evaluated through user-designated cases in order to demonstrate the real impact of the system on 
enhancing water management and integrated water resource management plans. The WOIS is 
already implemented in major African river basin authorities, several African ministries and 
agencies, as well as in research and humanitarian organizations, and new users are expected once 
the source code is released. It will therefore continue to develop in response to continued user 
requirements for new functionalities and functional improvements and due to general software, 
algorithm and method enhancements. A particular focus will be to ensure the support and 
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implementation of processing capacity for the upcoming Sentinel satellite systems by integrating 
the ESA Sentinel toolboxes and developing dedicated production workflows, which will turn 
WOIS into a fully-operational monitoring system. 

Through provision of this free, powerful and extendable system in combination with continued 
capacity building and training efforts, the TIGER-NET project strives to build the basis for an 
extension, i.e., to roll-out to other countries and regions in Africa and beyond. Another major aim 
is the continued support of the users and stakeholders in order to reach sustainability by attracting 
external funding opportunities to enable operational utilization of satellite data for Integrated Water 
Resource Management in Africa. More information about the WOIS software and the TIGER-NET 
project can be found on the project’s website: tiger-net.org. 
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Application of the Regional Water Mass Variations from 
GRACE Satellite Gravimetry to Large-Scale Water 
Management in Africa 

Guillaume Ramillien, Frédéric Frappart and Lucia Seoane 

Abstract: Time series of regional 2° × 2° Gravity Recovery and Climate Experiment (GRACE) 
solutions of surface water mass change have been computed over Africa from 2003 to 2012 with a 
10-day resolution by using a new regional approach. These regional maps are used to describe and 
quantify water mass change. The contribution of African hydrology to actual sea level rise is 
negative and small in magnitude (i.e., 0.1 mm/y of equivalent sea level (ESL)) mainly explained 
by the water retained in the Zambezi River basin. Analysis of the regional water mass maps is used 
to distinguish different zones of important water mass variations, with the exception of the 
dominant seasonal cycle of the African monsoon in the Sahel and Central Africa. The analysis of 
the regional solutions reveals the accumulation in the Okavango swamp and South Niger. It 
confirms the continuous depletion of water in the North Sahara aquifer at the rate of 2.3 km3/y, 
with a decrease in early 2008. Synergistic use of altimetry-based lake water volume with total 
water storage (TWS) from GRACE permits a continuous monitoring of sub-surface water storage 
for large lake drainage areas. These different applications demonstrate the potential of the GRACE 
mission for the management of water resources at the regional scale. 

Reprinted from Remote Sens. Cite as: Ramillien, G.; Frappart, F.; Seoane, L. Application of the 
Regional Water Mass Variations from GRACE Satellite Gravimetry to Large-Scale Water 
Management in Africa. Remote Sens. 2014, 6, 7379-7405. 

1. Introduction 

Satellite gravimetry remains the only technique that provides information on the total water 
storage change at continental scales and gives access to groundwater variations when a priori 
information on surface and sub-surface reservoirs is available [1–3]. Data of the Gravity 
Recovery and Climate Experiment (GRACE) mission were widely used to estimate changes in 
land water storage and fluxes over Africa at basin to regional scales. By using the first two years 
(April 2002 to May 2003) of GRACE data, the study of [4] show that seasonal total water storage 
(TWS) variations vary between ±50 mm of TWS in the Congo and Niger basins. Time series of 
GRACE data allow us to estimate inter-annual variations and trends in TWS, as well as the 
contributions of TWS to sea level change for the largest drainage basins and lakes of Africa [5–12]. 
They were also used for comparisons, validation and calibration of hydrological model outputs at 
the basin scale and over large bio-climatic regions, such as the Sahel or West Africa [13–16]. 
Combined with external datasets in situ, GRACE data offer the unique opportunity to estimate 
groundwater storage variations for lake drainage areas [17,18] and large river basins [19] or at a 
regional scale [20], river discharges [21], evapotranspiration at the basin scale [22–24] and the 
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water budget [25]. They were also used to determine the specific yield [26,27] and loading 
effects in the Sahel [28]. 

In the following section, the principle of classical satellite gravimetry and the particularities of 
the regional method for recovering water mass variations from GRACE satellite data are presented. 
Time series of 10-day 2° by 2° maps of water mass variations over Africa (30°W–60°E;  
40°S–40°N) are computed from accurate K-band range rate (KBRR) residuals along daily 
GRACE orbits for the whole period of GRACE (2003–2012). Then, global solutions used for 
comparing our regional solutions computed over Africa are listed. The spatial averages of our 
African solutions over hydrological units (see the drainage basins and desert aquifer area in 
Figure 1) versus time are computed to establish water mass balances, and, thus, sea level 
contributions, for the recent period covered by the GRACE mission. For isolating the African 
regions that produce the largest contributions to the sea level mass balance (and the ones in 
water deficit), the first space and time modes of the variability of GRACE data are extracted 
using a principal component analysis (PCA). Then, the PCA modes are compared to pure 
seasonal, semi-seasonal and multi-year linear trend variations (e.g., African monsoon), so that 
multi-year water mass gains (or losses) can be located in Africa and quantified. Finally, 
combining water volumes derived from regional TWS solutions and radar altimetry 
measurements of the level of the lakes enables us to estimate the soil and groundwater 
variations over the East African Great Lakes. 

Figure 1. Geographical locations of the main drainage basins of Africa used in this 
study: (1) Congo (~4 million square kilometers); (2) Nile (~3.4 million km2); (3) Niger  
(~2.1 million km2); (4) Zambezi (~1.4 million km2); (5) Orange (~0.97 million km2);  
(6) Volta (~408,000 km2); (7) Senegal (~270,000 km2); as well as the areas contributing 
to the Atlantic Ocean (blue dots), India Ocean (red dots), Mediterranean Sea (green 
dots) and the endorheic ensemble (purple dots). The driest part of the Sahara Desert 
area in South Algeria (8) (~1.1 million km2) and (9) the North Western Sahara Aquifer 
System (NWSAS) (~1.6 million km2) are also displayed. 
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2. Recovery of Surface Water Mass Changes by Space Gravimetry 

Since its launch in 2002, the Gravity Recovery and Climate Experiment (GRACE) space 
mission has measured, for the first time, changes of total water storage (TWS), including surface 
water, soil, moisture and groundwater, with unprecedented centimeter accuracy in terms of geoid 
height. GRACE data have already demonstrated a strong potential for estimating hydrological 
system information, such as river discharges [29], evapotranspiration rate [22,30], groundwater 
variations [31–33] and the detection of extreme climate events, such as floods and droughts [34–40]. 
Several analysis centers, such as the Center for Space Research, University of Texas (CSR) in 
Austin (TX), the Jet Propulsion Laboratory (JPL) in Pasadena (CA), the GeoForschungsZentrum 
(GFZ) in Potsdam (Germany) and the Groupe de Recherche en Géodésie Spatiale (GRGS) in 
Toulouse (France), use Level 1-B GRACE observations to produce lists of monthly and 10-day 
global Stokes coefficients (i.e., spherical harmonics of the geopotential) up to harmonic degree 60 
for CSR Release 5, 80 for GRGS RL03 and 90 for JPL and GFZ RL05; in other words, at the 
maximum surface resolution of 250–300 km. During the estimation process of the dimensionless 
Stokes coefficients from orbit data, the static gravity field and its time variations (i.e., atmospheric 
and ocean mass changes, including the effects of the periodic tides) are removed through a priori 
models describing these known gravitational accelerations. Therefore, the residuals correspond to 
the unmodeled contributions of mass to the observed gravity field and, mainly, the continental 
hydrology component. 

Unfortunately, the correction models remain imperfect due to their lack of completeness in the 
description of water mass movements by omission and/or the lack of resolution, which represent 
important sources of error in the recovery of continental hydrology variations. As GRACE-based 
residual Stokes coefficients are averages over constant time intervals of 10 days or a month, errors 
in the correction models with periods from hours to days contaminate these GRACE solutions by 
aliasing and, thus, degrade their accuracy [41]. These effects of signal distortion deteriorate the 
quality of true water mass signals into other time frequencies and make these signals 
indistinguishable by sampling.  

In the case of the GRACE orbit, hydrology-related signals are measured mainly along satellite 
tracks in the nearly latitudinal direction, but they are projected onto global spherical harmonics 
(SH) functions, which ensure the best spatial frequency representation. Because of this polar plane 
geometry of the GRACE orbit, this particular distribution of measurements creates north-south 
“stripes” in the 10-day and monthly GRACE solutions. Moreover, the determination of the SH 
coefficients leads to underdetermined systems of normal equations to be solved by creating 
correlations between SH coefficients of high degrees (i.e., >10–15) [42] and amplification of this 
orbit error and data noise [43].  

Another problem while using SH is the “leakage” of energetic signals propagating over the 
entire sphere, as these global undulations come to pollute the water mass estimated in the region of 
interest. This is particularly the case of small regions that are not fully represented by the degree  
60 truncated SH spectra of the GRACE solution (i.e., error by omission). Besides, different  
low-pass filtering techniques have been proposed, but they can partly cancel some of these  
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effects [42,44,45]. The simplest way to increase the signal-to-noise ratio in estimation remains to 
average the signals over large surfaces of more than one million square kilometers, such as tropical 
drainage basins, to cancel the effects of the short wavelength SH undulations. 

An alternative approach for estimating surface water mass densities in a region from GRACE 
data has been recently proposed by [46,47]. This new strategy is based on the optimal localization 
in space, instead of the best localization in spatial frequency, and leads theoretically to better 
spatial localization and resolution [48]. The authors of [47] have shown that this regional method 
offers a reduction of both north-south striping due to the distribution of GRACE satellite tracks and 
the temporal aliasing of correction models over South America [36] and Australia [49]. According to 
these two latter studies, regional maps present more realistic spatial and temporal patterns than the 
global solutions when compared to independent datasets of rainfall. The main modes of variability in 
South America coincide with the geographical limits of known hydrological units, such as individual 
groundwater layers [36]. In the present article, 10-day regional solutions over Africa are analyzed and 
compared to other datasets.  

3. Methodology of the Regional Approach 

The two main steps of this regional method are: (1) using the principle of mechanical energy 
conservation to deduce the variations of difference potential anomalies (DPA) between the twin 
GRACE satellites, representing mainly the continental hydrology contribution, from the accurate 
along-track KBRR measurements; and (2) adjusting the equivalent water heights (EWH) of a 
network of juxtaposed 2° by 2° surface tiles by the linear inversion of the DPA passing over the 
considered region every 10 days [46,47]. This regional approach differs from the NASA  
“mascons” [50–52] as, instead of classical band-limited SH, the regional method imposes the 
geometry and the best spatial localization of surface hydrology structures by construction. 

In the first step, KBRR observations are reduced by removing the contributions of known 
gravitational accelerations related to large-scale mass variations (i.e., atmosphere and ocean mass 
variations, polar movements, solid and oceanic tides, as well as the static gravity field of the Earth that 
represents 99% of the observed signals). This operation is made by iterative least squares adjustment of 
daily dynamical orbits using the Géodésie par Intégrations Numériques Simultanées (GINS)  
software [53,54]. Thanks to the measurements of on-board GRACE accelerometers, the effects of  
non-conservative forces are also removed from the KBRR observations in the orbit adjustment. KBRR 
residuals represent the cumulated contributions of unmodeled phenomena and, mainly, water storage 
change over continents. These residuals are related to the different accelerations of the two GRACE 
vehicles resulting from the gravity signals of continental hydrology, and they are easily converted into 
variations of kinetic energy differences. According to the principle of energy conservation, these kinetic 
energy difference variations directly correspond to potential energy differences, or in other words, 
DPA. To reduce unrealistic orbit errors at fractions of the satellite revolution periods and, thus, to avoid 
numerical instabilities in the following linear inversion, DPA arcs passing over Africa are linearly  
de-trended. It locally absorbs orbit error and keeps a subset of DPA short and medium wavelengths that 
are less than the latitudinal dimension of the considered region. The missing long-wavelength 
information of water mass change is from the first degrees of the GRGS solutions, and these large 
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undulations are added to the DPA-derived regional solutions to complete the water mass signals after 
the inversion of residual DPA [36,47,49].  

Figure 2. Schematic view of the processing for estimating global and regional solutions 
from a given 10-day or monthly period of Gravity Recovery and Climate Experiment 
(GRACE) observations. GINS, Géodésie par Intégrations Numériques Simultanées; 
GRGS, Groupe de Recherche en Géodésie Spatiale; SVD, singular value decomposition; 
KBRR, K-band range rate. 

 

In the second step of the method, the Newtonian matrix A is defined from the positions of the 
two GRACE satellites and of the surface tiles, in a geocentric reference frame, according to 
Newton’s first law of attraction. This matrix relates each unknown EWH to the DPA observations 
inside the region during 10 successive days. As gravimetry inversion does not usually provide a 
unique solution, regularization strategies should be applied to find numerically-stable solutions, 
either based on the truncation of singular values [46] or by introducing an averaging radius [47].  
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This latter type of regularization consists of adding a spatial constraint matrix block C to the 
Newtonian matrix A. The coefficients of this extra matrix C are obtained by imposing each 
equivalent water height to be a linear combination of its neighbors weighted by the inverse of their 
angular distances and inside a maximum geographical radius r. In the case of spatial “averaging”, 
the coefficients for a given radius r should equal 1/P, as P is the number of surface tiles located at a 
distance lesser than r, and 0 elsewhere. Introduction of these linear constraints enables the  
ill-conditioned matrix A to be inverted. A good compromise for keeping enough hydrological 
details with no smoothing and limiting the increase of numerical noise was earlier found by 
considering a radius of r = 600 km over continental areas [47]. A simplified flowchart summarizing 
the estimation process of regional solutions is presented in the following Figure 2. 

4. Datasets Used in This Study 

4.1. 10-Day Regional GRACE Solutions for Africa  

Daily arcs of five-second sampled K-band range (KBR) measurements of the inter-satellite 
velocity have been used in the GINS software [53,54] to adjust dynamical reference orbits. 
GRACE data are corrected from the known gravitational accelerations related to atmosphere and ocean 
mass redistributions, including tides and polar movements, using a priori global models. KBR rate 
residuals that represent mainly the continental hydrology have been converted into residual 
differences of potential (RDP), according to the conservation of the mechanical energy of the two 
GRACE vehicles versus time. Satellite tracks flying over Africa are selected, and each one is 
corrected from a least squares-adjusted linear trend. Following the two-step regional method 
explained in the previous section, time series of successive 10-day and 2° by 2° solutions of water 
mass change have been inverted over the whole African continent (30°W–60°E; 40°S–40°N) from 
RDP and, then, completed with the long wavelengths (>6700 km) of the GRGS GRACE solutions, 
or equivalently, the SH of degrees less than six, for the period 2003–2012. One complete year of 
regional solutions is displayed in Figure 3.  

4.2. Global GRACE Solutions from Official Centers CSR, GFZ and JPL 

Three processing centers, including the Center for Space Research (CSR), Austin, TX, USA, the 
GeoForschungsZentrum (GFZ), Potsdam, Germany, the Jet Propulsion Laboratory (JPL), Pasadena, 
CA, USA, and the Science Data Center (SDC) are in charge of the processing of the GRACE data 
and the production of Level-1 and Level-2 products. These products are distributed by the GFZ’s 
Integrated System Data Center (ISDC) [55] and the JPL’s Physical Oceanography Distributive 
Active Data Center (PODAAC) [56]. Preprocessing of Level-1 GRACE data (i.e., positions and 
velocities measured by GPS, accelerometer data and KBR inter-satellite measurements) is routinely 
made by the SDC, as well as monthly global GRACE gravity solutions (Level 2). These latter 
solutions consist of time series of monthly averages of Stokes coefficients (i.e., dimensionless 
spherical harmonics coefficients of geopotential) developed up to a degree between 50 and 120 that 
are adjusted from along-track GRACE measurements. A dynamical approach, based on the 
Newtonian formulation of the satellite’s equation of motion in an inertial reference frame, centered 



31 
 

 

at the Earth’s center, combined with dedicated modeling of the gravitational and non-conservative 
forces acting on the spacecraft, is used to compute the monthly GRACE solutions [57]. During the 
estimation process, atmospheric and ocean barometric redistribution of mass variations are 
removed from the GRACE coefficients using European Centre for Medium-range Weather Forecasts 
(ECMWF) and National Centers for Environmental Prediction (NCEP) reanalysis for atmospheric mass 
variations and ocean tides, as well as global ocean circulation models. The GRACE coefficients are 
hence residuals that should represent mainly continental water storage, but also errors from the 
correction models and noise. The monthly GRACE solutions differ from one official provider from 
another due to the differences in the data processing, the choice of the correction models and the data 
selection for computing the monthly averages. 

Figure 3. Example of one-year series of regional maps of water mass changes presented  
at 10-day intervals from June 2007 to June 2008 (see also the next section), for the  
two semesters. 
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Figure 3. Cont. 

 

4.3. Global GRACE Solutions Provided by GRGS  

These Level-2 European Improved Gravity model of Earth by New techniques solely from 
GRACE Satellite data (EIGEN) Release 04 10-day gravity models are derived from Level-1 
GRACE measurements, including KBRR, from LAser GEOdynamics Satellites (LAGEOS) 1 and 2 
Satellite Laser Ranging (SLR) data for the enhancement of lower harmonic degrees [47] and using 
an empirical stabilization approach without any post-processing smoothing or filtering. The 10-day 
Stokes coefficients are converted into terms of water mass coefficients from degree 2 up to degree 
50–60 (i.e., spatial resolution of 400 km), expressed in EWH. Regular one-degree 10-day maps of 
surface water mass for the period 2002–2012 are derived from these latter SH water mass 
coefficients and made available for the last release (RL03) [58].  

4.4. Independent Component Analysis of CSR, JPL and GFZ GRACE Solutions  

Since the global GRACE solutions are unfortunately dominated by striping, our idea is to 
combine monthly solutions from different centers of analysis to extract the continental hydrology 
component from noisy sources by redundancy. A post-processing method based on independent 
component analysis (ICA) was applied to the Level-2 GRACE solutions from official providers 
(i.e., University of Texas–Center for Space Research (UTCSR), JPL and GFZ). Pre-filtered with 
400-km radius Gaussian filters before applying an ICA, the Level-2 GRACE solutions need to be 
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somehow low-passed filtered to not have a Gaussian distribution. When they are not filtered 
enough, they are still dominated by striping, and their distribution keeps being Gaussian. If they are 
too low-pass filtered, they correspond to the long wavelengths of the continental hydrology, and 
they also exhibit Gaussian properties. A compromise of ~400 km to ensure no Gaussianity, and, 
thus, an efficient separation, has been proposed by [59] after several tests to extract most of the 
parts of the continental hydrology. Time series of ICA-based global maps of continental water 
mass changes computed over the period of March 2003–December 2010, are used for the 
comparison in this study [45]. For a given month, the ICA 400-km filtered solutions only differ by 
a scaling factor, so that only the GFZ-derived ICA 400-km filtered ones are presented. 

4.5. Time Series of Altimetry-Derived Water Level of Lakes in East Africa  

Satellite altimetry was originally designed to provide accurate measurements of the dynamic 
topography of the ocean [60]. Radar altimeters demonstrated strong capabilities to accurately 
estimate water levels over land and are now used for systematic monitoring of lakes [61,62], large 
rivers [63,64], wetlands and floodplains [65]. 

In this study, we used the time series of water levels derived from satellite altimetry 
measurements made available by the Hydroweb database at Laboratoire d’Etudes en Géophysique 
et Océanographie Spatiales (LEGOS)–Observatoire Midi-Pyrénées (OMP) [66] for four large lakes 
of East Africa (i.e., lakes Turkana, Victoria, Tanganyika and Malawi). All details about the 
processing of altimetry data and the computation of time series of water levels can be found in [61]. 
As these lakes do not have significant changes in area, the time series of water levels were simply 
converted into time series of water volumes using the mean surface of the lakes, as in [18]. The 
mean surfaces of the lakes are 8860, 68,800, 32,600 and 22,490 km2 for Turkana, Victoria, 
Tanganyika and Malawi lakes, respectively [67]. 

4.6. TRMM 3B43 Monthly Rainfall 

In this study, we used the Tropical Rainfall Measuring Mission (TRMM) 3B43 product which is 
a combination of monthly rainfall at a spatial resolution of 0.25° from January 1998 to December 
2012, and other data sources. This dataset is obtained by combining satellite information from the 
passive microwave imager (TMI) and precipitation radar (PR) onboard the Tropical Rainfall 
Measuring Mission (TRMM), a Japan-U.S. satellite launched in November 1997, the Visible and 
Infrared Scanner (VIRS) onboard the Special Sensor Microwave Imager (SSM/I) and rain gauge 
observations. The dataset results from the merging of the TRMM 3B42-adjusted merged infrared 
precipitation with the monthly accumulated Climate Assessment Monitoring System or Global 
Precipitation Climatology Center Rain Gauge analyses [68,69]. 
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5. Results and Discussion 

5.1. Residual Errors Estimated in the Arid Sahara Region  

Figure 4 presents a time series of TWS in a desert area in the south of Algeria. As no 
hydrological variations are expected in such a very dry region, the residual water mass signals can 
be interpreted as a good indicator of the error in estimating water mass variations from GRACE 
orbit data. These recovery errors do not exceed 15–19 mm EWH RMS when GRACE solutions are 
averaged over a surface of ~1 million square kilometers, consistently found by [70] from one year of 
global solutions. They also exhibit a seasonal cycle, in particular for the global and regional 
solutions (see Figure 4), which may result from leakage effects from surrounding areas polluting 
stronger water mass signals from the neighboring drainage basins, as well as errors from the a 
priori models used for correcting GRACE data and isolating the continental hydrology variations. 
For the global solutions, this latter effect is due to the spectral SH truncation of the global solutions 
at degree n = 60–90 (and of the underlying correcting models developed in SH for our regional 
solutions); in other words, the lack of spatial resolution to describe small objects, which creates 
unrealistic undulations propagating over the entire terrestrial sphere (i.e., leakage), as explained in 
Section 2. 

Figure 4. Total water storage (TWS) time series for the dry region of South Algeria (8 
in Figure 1) considering the regional GRACE solutions (top) and global solutions from 
different pre-processing centers (bottom). Amplitudes over this region are typically 
less than 20 mm of equivalent water height (EWH) RMS. RL, release. 
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Figure 4. Cont. 

 

5.2. Pre-Analysis of the 10-Day Maps of Water Mass over Africa  

Annual, semi-annual amplitudes and linear trends for each surface element have been least 
squares adjusted from the complete series of 10-day regional solutions over the period 2003–2012. 
Dominant seasonal amplitudes of ±200 mm EWH are well located in the Sahel latitudinal band 
(i.e., 5°N–15°N), as expected, and in the Congo Basin (Figure 5).  

Figure 5. Maps of the seasonal amplitudes of the water mass changes adjusted by  
least squares adjustment of a pure annual sinusoid at each grid cell of the 10-day 
regional solutions over Africa (2003–2012): (a) Regional solutions; (b) GRGS RL03 
global solutions; (c) ICA 400-km filtered solutions. Units are mm of EWH. Note the 
strong signals due to the African monsoon in the Sahel latitudinal band.  
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Figure 6. Maps of the linear trends of the water mass changes by fitting a linear trend 
for each grid cell from all of the 10-day regional solutions over Africa for 2003–2012: 
(a) Regional solutions; (b) GRGS RL03 global solutions; (c) ICA 400-km filtered 
solutions; (d) TRMM Precipitation 2003–2012. Units are mm of EWH per year. 

 

 

The seasonal signature of the West African monsoon can also be seen [14]. It is slightly greater 
for the global GRGS and 400-km ICA solutions. Besides, negative linear trends are found in the  
Tigris-Euphrates region of 25 mm EWH per year, consistent with the recent depletion of water 
mass shown by previous studies [71]; there are important gains of water mass over the Okavango 
swamps, reaching more than +30 mm EWH per year (Figure 6). In the Niger basin, the gain 
remains close to +15 mm EWH per year. There are also slight depletions in the south of Lake Chad 
and in the south of Mozambique. Unrealistic north-south striping in the trend estimates is more 
important for the global GRGS solutions than for 400-km ICA solutions, as the combination of 
different global solutions by ICA reinforces the hydrological signals versus the noise. Striping does 
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not appear in the linear trend map related to the regional solutions at all (e.g., see the residuals over 
the oceans). 

5.3. Principal Component Analysis of the GRACE Datasets  

Principal component analysis (PCA), or discrete Karhunen–Loève transform, consists of 
decomposing the time series of water mass maps (i.e., maps of regional water mass over Africa) 
into main space and time “modes” that are projections onto orthogonal directions (or the principal 
axis) of variability [72] (e.g., see [73] for the computational aspects). Before PCA decomposition, 
the time series of the regional solutions has been corrected from the dominant seasonal oscillation 
related to each surface element (see Figure 5) using 13-month window averaging. 

5.3.1. First Mode of Variability: The Long-Term Behavior  

This mode corresponds to multi-year variations of water mass, since its temporal mode is 
characterized by a regular increase from 2006 to 2010 (Figure 7). All of the spatial modes range  
in ±100 mm EWH. This represents 50%–70% of the explained variance of the regional and smooth 
ICA solutions and 71% of the GRGS solutions. 

Figure 7. The first spatial and temporal modes of principal component analysis (PCA) 
of the regional, global GRGS and 400-km ICA GRACE solutions (top). The 
corresponding linear trends of the precipitation from TRMM for comparison (bottom). 
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Figure 7. Cont. 

 

Thus, the corresponding spatial modes and the linear trend map presented in Figure 6 show 
similar patterns. The spatial mode associated with the monthly GRGS solutions contains 
unrealistic, short-scale undulations on the oceanic areas, as they are now derived from an empirical 
singular value decomposition (SVD) process of stabilization, and not a low-pass filtering, as for the 
GFZ, CSR and JPL solutions, which eliminates short wavelength more efficiently. The spatial 
components of the global solutions are affected by striping, especially the GRGS solutions, 
whereas no striping is visible in the regional water mass maps. There has been a dominant increase 
of mass in the Okavango swamp in the Zambezi River basin since 2006. The Okavango water 
system is an endorheic basin with no outlet to the sea, and it empties into the Kalahari Desert 
(~18,000 square kilometers), known as the Okavango Delta. Water storage also increases regularly over 
Volta Lake in Ghana, which is the largest artificial lake in the world. An important mass loss is 
observed in the Congo basin, centered on the extensive floodplains known as the “Cuvette Centrale” 
(see [74] for their spatial extent), especially in the regional solutions. The signature of water mass 
depletion in the NWSAS region is also clearly visible in this first PCA mode associated with the 
regional solutions. The temporal component of the first mode of the TRMM rainfall also exhibits  
multi-annual variations (Figure 7). The corresponding spatial mode of the precipitation shows patterns 
that coincide with the modes of the PCA of regional/global GRACE solutions, in particular the  
long-term deficit of water for the Niger Delta and further over the land of Cameroon, as well as the 
increase along the coast of Guinea, Sierra Leone, Liberia, Ivory Coast and Ghana. 
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Figure 8. Second spatial (top) and temporal (bottom) modes of the PCA of the 
regional, global GRGS and 400-km ICA GRACE solutions. Units are mm EWH. 

 

 

5.3.2. Second and Third Modes of Variability  

Second and third modes represent only 10%–15% and 6%–10% of the explained variances of the 
water mass signals, respectively (Figures 8 and 9). As the amplitudes of the third modes are smaller, it 
is more complicated to interpret its spatial and temporal patterns. The modes of global solutions still 
suffer from unrealistic striping that is visible over oceanic areas. In particular, the modes related to the 
GRGS solutions are affected by short wavelength noise. Except the JPL solutions, the temporal 
characteristics of the second PCA modes are two-year oscillations, as well as the maximum amplitudes 
of the spatial patterns on Central and Western Africa (i.e., northern part of the Congo River basin), 
including the Sahel, and along the Ivory Coast. As seasonal and semi-annual components have been 
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removed before applying PCA, these patterns correspond to the bi-annual or quadrennial water mass 
variations related to the West African monsoon. Residual six-month and even multi-year oscillations 
appear for temporal modes of JPL.  

Figure 9. Third spatial (top) and temporal (bottom) modes of the PCA of the regional, 
global GRGS and 400-km ICA GRACE solutions. Units are mm EWH. 

 

 

As for the first mode of variability, similarities between PCA modes of GRACE and TRMM 
rainfall exist. The second PCA mode of the TRMM data is characterized by important amplitudes 
of precipitation in the southern tropics, in particular over the Congo Basin. This strong signal also 
appears in the second modes of GRACE datasets, but it is less visible in the case of GRGS 
solutions. The temporal mode of the rainfall data is shifted; it occurs ~6 months sooner than the 
GRACE solutions (Figure 8). The third mode of rainfall is related to the African monsoon, as its 
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main signature is located in the Sub-Saharan band, as for the spatial PCA modes of GRACE 
solutions (Figure 9).  

5.4. Time Series of TWS Averaged over African River Drainage Basins 

The masks used in this study come from the five-minute, 1/2° and 1° datasets of the continental 
watersheds and river networks for use in regional and global hydrologic and climate system 
modeling studies [75]. The 1° dataset is used for the drainage regions and the river watersheds, 
while the 0.5° dataset is used to define the drainage regions around the lakes. The coordinates of 
the drainage basin limits for each lake are obtained using the lake boundaries and the drainage 
network at 1/2°. 

Time series of water mass for the main drainage basins of Africa over 2004–2012 (see Figure 1) 
have been computed as masked averages versus time and then converted into mm of equivalent sea 
level (ESL) profiles. In this latter operation, the water volume variations (i.e., equivalent water 
heights times the basin surface) are divided by the surface of the oceans (~360 million square 
kilometers) and multiplied by 1. The per-basin time series of ESL are presented in Figure 10. 
Positive multi-year contributions to the sea level concern the Congo, Nile and Orange river basins, 
and they represent +0.044 mm/y in total, whereas the total negative contribution from the other 
basins is more important in magnitude (i.e., 0.123 mm/y), where the multi-year sea level 
contribution of the Zambezi Basin is the largest in magnitude (i.e., 0.1 mm/y). This region 
centered on the Okavango swamps and floodplains has been storing more and more water during 
the last decade. 

As displayed in Figure 11, the sea level contributions averaged over large drainage areas to the 
Atlantic and Indian oceans and the Mediterranean Sea exhibit clear seasonal oscillations of 
amplitudes ±2, ±1 and ±0.5 mm of ESL, respectively. The seasonal contribution of land waters to 
the Indian Ocean (i.e., runoff along the southeastern coast of Africa) is in opposite phase with the 
two others. The sum of the contribution of these three large areas is negative (i.e., 0.088 mm per 
year); thus, the water mass balance of Africa for the period 2004–2012 indicates a gain of mass on 
the continent. In particular, the strongest multi-year trend magnitude is the one related to the Indian 
Ocean (i.e., 0.094 mm/y), as it shows a clear acceleration of the gain of water mass on land during 
recent years, passing from 0.034 mm/y before 2008 to 0.123 mm/y after 2008. A comparison 
with Figure 5 indicates that the latter contribution is driven by the long-term variations of the 
hydrology in the Zambezi River Basin. For the Atlantic and Mediterranean contributions, the 
positive ESL trends have been decreasing since 2008 from +0.138 mm/y and +0.030 mm/y down to 
+0.071 mm/y and +0.027 mm/y, respectively. Once the global isostatic adjustment (GIA) of the 
solid Earth from mainly post-glacial rebound and representing 0.3 mm/y is corrected [76,77], the 
net contribution of African rivers to sea level for 2004–2012 remains small, since it represents only 
~3% of the global increase of the sea level of 3.3 ± 0.4 mm/y measured by altimetry. This latter 
comparison suggests that the multi-year contribution of Africa hydrology remains in the total sea 
level error bar. 
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Figure 10. Time series of equivalent sea level (ESL) for the chosen main African river 
basins (solid line) and the corresponding 13-month low pass filtered profiles (dashed line). 

 

Figure 11. Time series of the main African river basins contributions to the Atlantic 
and Indian oceans, as well as to the Mediterranean Sea, expressed in mm of ESL. 

 



43 
 

 

5.5. Detection of Recent Groundwater Withdraw of NWSAS Aquifer 

The NWSAS presented in Figure 1 (Area 9) is characterized by a transboundary “fossil” aquifer 
(i.e., with no meteoric water recharge) shared by three countries (i.e., 60% Algerian, 30% Libyan 
and 10% Tunisian surfaces) and in a critical situation of depletion by intense water pumping. While 
the groundwater imbalance is 2.2 km3 per year as estimated from historical records of piezometry 
before the year 2000 (see the report of [78]), our regional GRACE solutions averaged over the 
NWSAS indicate that the depletion of groundwater for the most recent decade is twice that, 
suggesting a worrying acceleration of the withdrawing of drinking water (Figure 12). In particular, 
a sudden loss of 25 km3 lasting a few months appears in the year 2007 between the periods 
January 2004–December 2007, and January 2008–January 2012. A comparison with the latter 
trends estimated considering the total GRACE period suggests that the rapid drop of groundwater in 
2007–2008 remains exceptional (according to the dashed line). These are consistent with the recent 
estimates of groundwater loss from 2.2 km3/y in 2000 [78] to 2.75 km3/y in 2010 [79]. Time 
variations of TWS from GRACE appear reliable to directly and efficiently estimate the region-wide 
groundwater changes in a large aquifer system in arid areas and to provide useful information on 
groundwater recharge. 

Figure 12. TWS time series over the NWSAS region (Libya-Tunisia-Algeria) aquifer  
(9 in Figure 1) (solid line) and the corresponding 13-month averaged profile (dashed line). 

 

5.6. Subsurface Water Storage Changes by Combining Regional Solutions and Radar  
Altimeter Data 

Time series of the subsurface waters (i.e., soil plus ground waters) were estimated by removing 
altimetry-based water levels of the main African lake, or reservoir waters, from the TWS measured 
by GRACE. As altimetry-based water levels from [78] have a temporal resolution of one month, the 
ten-day regional solutions were consequently averaged on monthly time periods before computing 
the mere difference. Anomalies of these residual subsurface waters, including groundwater, were 
estimated at a monthly time-scale as the difference between TWS and surface storage over the 
common period of availability of two datasets (i.e., mid-2003–2012). These anomalies are 
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presented in Figure 13 for the largest East African lakes: Turkana, Victoria, Tanganyika and 
Malawi. They temporally and/or spatially extend the previous studies from [17,18,80], but using 
regional solutions instead of classical global ones. 

Figure 13. Time-series of the anomaly of the water storage of TWS (black), of the 
surface reservoir (blue) and of the subsurface reservoir, including groundwater (red), in 
the left column, and their inter-annual variations, in the right column, for Lake Turkana 
(a), Lake Victoria (b), Lake Tanganyika (c) and Lake Malawi (d).  
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Time variations of TWS and subsurface waters are well correlated for the three largest lakes, as 
the correlation coefficient R equals 0.75, 0.76 and 0.76 for Lake Victoria, Lake Tanganyika and 
Lake Malawi, but not for the smaller Lake Turkana, with R equal to 0.28. If the surface water 
storage represents only a small part of TWS variations, as for Lake Turkana over 2003–2013, its 
inter-annual variations are larger than the inter-annual TWS signals, similarly to what was found  
by [18]. The inter-annual signals of subsurface water presents three successive phases: from  
mid-2005 to mid-2008: they decreased at an average rate of 4 km3/y from mid-2008 to mid-2009 
and remained stable; and since then, they present a bi-annual cycle of ±5 km3 of amplitude  
(Figure 13a). For Lake Victoria, the variations of the anomaly of water storage are greater for the 
surface reservoir than for the TWS. A larger decrease is observed for the anomaly of surface 
storage ( 60 km3/y from 2004 to the beginning of 2006) than for TWS ( 70 km3/y from 2004 to 
mid-2006) and the opposite up to the end of 2007, with increases of 40 and 20 km3/y for the surface 
water storage and TWS, respectively. Consequently, subsurface water is varying as the difference 
over the same time periods (Figure 13b). The results obtained with the regional solutions are very 
similar to those obtained by [18,81]. Nevertheless, [18] found larger variations of TWS than these 
from surface water, most likely because these authors included in the drainage areas of Lake 
Victoria the Kivu, Edouard, Albert and Kyoga lakes and their drainage areas, without adding their 
volume variations to the surface storage.  

The TWS variations are dominated by the subsurface water component for Lake Tanganyika. A 
large variation of TWS, strongly impacting the subsurface water reservoir, is observed from 2005 
to 2008, with a minimum reaching 40 km3 in the beginning of 2006 and a maximum of 30 km3 in 
the beginning of 2007. Smoother variations are present in the surface reservoir (Figure 13c). 

As for Lake Victoria, TWS variations of Lake Malawi are dominated by the surface component, 
but the amplitudes of the surface reservoir are slightly greater than these from TWS at an inter-annual 
time scale. The time variations of the surface reservoir exhibit a steep decrease from 2004 to the 
beginning of 2006, followed by a significant increase up to mid-2009, whereas they are lower for 
TWS (Figure 13d). 

These results demonstrate the strong capacities of multi-satellite observations to monitor 
quantitatively the changes in the storage of the surface and sub-surface reservoirs associated with 
climate variability and human activities at a regional scale. These remotely-sensed datasets are 
likely to have huge importance in regions where in situ data are sparse, while they have huge 
importance in terms of water supply for dense human populations. In the case of Lake Victoria, it 
directly supports 30 million people in terms of a freshwater supply [8] and indirectly another 340 
million people along the Nile Basin [82], being the source of the White Nile. 

6. Conclusions 

In this paper, we present 10-day regional solutions of water mass change over Africa for the 
period 2003–2012, revealing the dominant seasonal and African monsoon signals (±250 mm 
EWH). Principal component analysis (PCA) of the GRACE datasets provided the main modes of 
variability of the surface water mass. Temporal and spatial patterns are consistent for the regional 
and global solutions. However, the regional solutions offer a better geographical localization of 
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hydrological structures, while global solutions remain affected by aliasing errors (i.e., north-south 
striping). This is probably due to the benefit of details brought by GRACE short tracks into the 
regional solution, instead of considering band-limited spherical harmonics defined on the entire Earth. 

Monitoring water supply by using these regional solutions enables us to confirm the long-term 
drought of the NWSAS aquifer and even to reveal the sudden water loss occurring in early 2008. In 
terms of large-scale mass balance, the small contribution of the African hydrology changes to 
global sea level rise for the period 2004–2012 remains negative, especially due to the gain of water 
mass in the swamp regions of the Zambezi River basin that represents 0.123 mm/y of ESL as a 
continuous deficit of the level for the Indian Ocean. Principal component analysis of the complete 
time series of regional GRACE solutions has been made to identify the separate contributions of 
the different African regions. In particular, the first mode of PCA, representing 50%–70% of the 
explained variance, reveals the long-term drought in East Africa and in the region of Lake Chad 
and, alternatively, the increase of water mass in the Okavango and Niger regions. The second PCA 
mode of 10% corresponds to an oscillation of two years over the Sahel and the central African 
regions. This latter mode is clearly related to the residuals of the dominant African monsoon. 
GRACE-derived TWS variations demonstrated strong capabilities for land water management in 
terms of monitoring the sub-surface changes alone over arid and semi-arid areas, such the NWAS 
basins, or in combination with altimetry-based water levels for lake drainage areas. 
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Use of Radarsat-2 and Landsat TM Images for Spatial 
Parameterization of Manning’s Roughness Coefficient in 
Hydraulic Modeling 

Joseph Mtamba, Rogier van der Velde, Preksedis Ndomba, Zoltán and Felix Mtalo 

Abstract: Vegetation resistance influences water flow in floodplains. Characterization of vegetation 
for hydraulic modeling includes the description of the spatial variability of vegetation type, height 
and density. In this research, we explored the use of dual polarized Radarsat-2 wide swath mode 
backscatter coefficients ( °) and Landsat 5 TM to derive spatial hydraulic roughness. The spatial 
roughness parameterization included four steps: (i) land use classification from Landsat 5 TM;  
(ii) establishing a relationship between ° statistics and vegetation parameters; (iii) relative surface 
roughness (Ks) determination from Synthetic Aperture Radar (SAR) backscatter temporal variability; 
(iv) derivation of the spatial distribution of the spatial hydraulic roughness both from Manning’s 
roughness coefficient look up table (LUT) and relative surface roughness. Hydraulic simulations 
were performed using the FLO-2D hydrodynamic model to evaluate model performance under three 
different hydraulic modeling simulations results with different Manning’s coefficient 
parameterizations, which includes SWL1, SWL2 and SWL3. SWL1 is simulated water levels with 
optimum floodplain roughness (np) with channel roughness nc = 0.03 m 1/3/s; SWL2 is simulated 
water levels with calibrated values for both floodplain roughness np = 0.65 m 1/3/s and channel 
roughness nc = 0.021 m 1/3/s; and SWL3 is simulated water levels with calibrated channel roughness 
nc and spatial Manning’s coefficients as derived with aid of relative surface roughness. The model 
performance was evaluated using Nash-Sutcliffe model efficiency coefficient (E) and coefficient of 
determination (R2), based on water levels measured at a gauging station in the wetland. The overall 
performance of scenario SWL1 was characterized with E = 0.75 and R2 = 0.95, which was improved 
in SWL2 to E = 0.95 and R2 = 0.99. When spatially distributed Manning values derived from SAR 
relative surface values were parameterized in the model, the model also performed well and yielding 
E = 0.97 and R2 = 0.98. Improved model performance using spatial roughness shows that spatial 
roughness parameterization can support flood modeling and provide better flood wave simulation 
over the inundated riparian areas equally as calibrated models. 

Reprinted from Remote Sens. Cite as: Mtamba, J.; van der Velde, R.; Ndomba, P.; Zoltán, V.; Mtalo, F. 
Use of Radarsat-2 and Landsat TM Images for Spatial Parameterization of Manning’s Roughness 
Coefficient in Hydraulic Modeling. Remote Sens. 2015, 7, 836-864. 

1. Introduction 

Riparian wetland ecosystems are flooded on multiple occasions every year, as floods are generated 
from excess rainfall in the catchment. The alteration of hydraulic regime in the river affects several 
ecological processes in the wetland floodplains, e.g., ecosystem productivity, species distribution and 
occurrence, nutrients and sediment dynamics [1–4]. To predict the impacts of flood wave on the 
floodplain, the hydraulic processes of the river have to be assessed at optimal temporal and spatial 
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scales using hydraulic models. Several efforts have been made to develop hydraulic models that can 
simulate flow patterns and predict extreme flood levels in rivers and floodplains [5–10]. The 
development of an accurate and reliable hydraulic model that well describes surface water flow 
across a large wetland floodplain depends on topographic data and hydraulic roughness, viz. 
Manning’s roughness of the floodplain [11,12]. Manning’s roughness is one of the key variables of 
a hydraulic model; vegetation component plays a crucial role in the total resulting roughness, 
especially in vegetated floodplains. High hydraulic roughness values reduce wave celerity and rise 
flood depth [13,14]. The uncertainty of roughness parameterization leads to errors in water level 
estimation and affects the hydrograph characteristics. 

The hydraulic roughness of a floodplain depends on factors, such as the type and structure of 
vegetation, the cross section area, obstructions in the channel and floodplain as well as the degree of 
meandering [15,16]. Different approaches have been used to quantify the hydraulic roughness across 
floodplains, e.g., using tabulated reference roughness coefficients, visually inspecting and comparing 
photographs of floodplain reaches and assigning the appropriate roughness values to similar 
floodplains [16] and using a momentum balance to define the hydraulic impacts of  
vegetation [11,17,18]. On small floodplain areas conventional ground surveys have been used [19]. 
Systematic detection, identification and assessment of riparian vegetation using conventional field 
sampling are often unachievable as these techniques are time-consuming and expensive. 

Remote sensing techniques, e.g., vegetation mapping, terrestrial laser scanning and digital parallel 
photography, have been proven useful in determination of vegetation types, density and height [19–23]. 
Different techniques of remote sensing of hydraulic roughness have been discussed in detail by  
Forzieri et al. [24]. These techniques include classification-derived hydraulic maps and estimation of 
vegetation hydrodynamic properties. The vegetation maps are obtained from classification of digital 
satellite images, and a hydraulic roughness value is assigned to each vegetation type then, based on 
a look-up table (LUT). This approach does not provide spatial variability of hydraulic roughness 
within a vegetation class. The second method of estimating hydraulic roughness is based on in-situ 
defined biomechanical properties of vegetation, e.g., height, density, but this requires extended 
complementary ground surveys that can be feasible only at local scale [19,23]. The benefits of 
calibrating of hydraulic model using this approach are to support determination of spatial hydraulic 
indices more accurately for other studies that requires calibrated hydraulic model, e.g., sedimentation 
deposition assessment. 

Previous studies in riparian environments using spectral remote sensing data have focused on 
classifying vegetation [25–30]. The applied LUTs were based on literature (e.g., [8,15,16]). Despite 
some encouraging results, the problem of the lack of within-class variability of the roughness 
coefficients was obvious, since differences in vegetation height and density within the class should have 
yielded different Manning’s roughness values [31]. In fact, different arboreal patterns, bushes and 
meadows, can have similar spectral signatures and cannot be always differentiated in optical satellite 
imagery. There is, therefore, a need to define new approaches that can support characterizing the  
spatial variability of the hydraulic roughness for large floodplains based on vegetation  
biophysical characteristics. 
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Synthetic Aperture Radar (SAR) is a remote sensing technique that enables the construction of 
high-resolution images from active microwave observations. In essence, these active microwave 
instruments quantify the apparent roughness of the target surface that is largely defined by the 
geometry and to lesser extent by the moisture content of the surface. As such, SAR observations have 
been used in the past for soil moisture monitoring [32,33], flood mapping [34–36] and vegetation 
mapping [37–43]. The SAR backscatter is controlled by vegetation structure, surface geometry and 
dielectric properties of the ground targets [44]. The dielectric properties are influenced by soil moisture 
and vegetation water content [32,44]. Microwave radiation penetrates vegetation canopies interacting 
with the canopy scatterers, i.e., leaves, twigs, branches, and the trunk [45]. Cross-polarization ratio 
can be used to determine relative surface roughness (Ks) variations within the vegetation class, 
identifying different areas with varying vegetation densities and types. Estimation of vegetation 
structure depends on multi-polarization scattering of SAR signals. Mattia et al. [46] studied the effect 
of surface roughness on multi frequency polarimetric L and C band data and found that depolarization 
ratio can be used to discriminate different types of vegetation canopies especially forest and  
non-forest areas. The depolarization ratio is equivalent to cross-polarization ratio in other literature. 
The cross-polarization ratio is characterized by surface and volume scattering mechanism at the 
vegetation canopy surface, while co-polarization ratio is characterized by surface and volume 
scattering (including tree trunk and branches mechanism). A study on vegetation canopy cover by 
Mathiew et al. [22] on savannah woody vegetation using C-band Quad- Polarization Fine Beam 
RADARSAT-2 imagery found that dry period HV polarization can be effectively used to predict 
structural metrics. The added advantage of the use of SAR in this research is to derive relative surface 
roughness that is correlated to biophysical properties of vegetation to support spatial variability of the 
hydraulic roughness within vegetation types. 

The main objective of this paper is to investigate the possible advantage of spatially distributed 
hydraulic roughness parameterization for hydraulic modeling of floodplains in comparison to a single 
hydraulic roughness value for the whole floodplain and a set of hydraulic roughness values defined 
per vegetation type. 

2. Material 

2.1. Study Area 

The Mara wetland (Figure 1) is one of the largest tropical wetland systems in East Africa, which 
has drawn attention for conservation. To understand hydrology and hydrodynamic processes in the 
wetland floodplain reliable models need to be developed. Mara wetland receives most of its water 
from the Mara River, originating from the Mau escarpment forest, passing through vast low-lying 
plains including the transboundary Masai Mara/Serengeti national parks, and releasing water into 
Lake Victoria. Floods typically occur during the months of November/December and April/May with 
water depths varying from 0.5 to 2 m in the floodplain. The riverbeds of the main Mara River and its 
tributaries are fairly well defined at their upper reaches, but become increasingly meandering as they 
approach the confluence with the Tigithe River. The decreasing slope reduces the downstream river 
velocity and increases deposition, a characteristic for most fluvial systems. 
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Figure 1. Location of the study area (rectangle) within the lower Mara River basin. 

The Lower Mara Basin has ten rain-gauging stations and five river water level measuring stations 
at Bisarwi (1), Tigithe bridge (2), Mara mine (5H2) (3), Kogatende (4) and Kirumi ferry (5H3). The 
development of rating curves for stations (1)–(4) is described in Mtamba et al. [47]. The Mara mines 
and Kirumi ferry gauging stations have been in operation since 1969. The other stations were 
specifically installed to support the flood modeling and understanding reach-scale hydraulics in  
2011–2013 [47,48]. The figure below shows historical gauging stations and temporary stations for 
hydraulic study (1–4). Mara mine (5H2) falls in both categories. 

2.2. Field Measurements and Remote Sensing Data 

2.2.1. Rainfall and River Discharge Measurements 

Rainfall data was obtained from the Lake Victoria Basin Office at Musoma office. The rainfall 
gauging stations are equipped with standard rain gauges. The measurement accuracy is about  
0.5 mm. The rainfall data from ten gauging stations in the lower Mara Basin were analyzed and 
averaged using Thiessen polygon approach to obtain daily rainfall in mm/day. 
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Figure 2. Discharge and areal rainfall at Mara mine gauging station. The values show 
four flood events during November/December and April/May. 

The gauging stations in the study area were equipped with staff gauges. Mara Mine and Tigithe 
bridge gauging station is located upstream of the wetland floodplain. The stations are equipped with 
standard gauge staff plates of 1m for water level measurements in the river. The measurements are 
taken manually twice a day at 9:00 and 15:00 h. The daily levels records are averaged to obtain 
average daily values. These water levels are converted to river discharge using a calibrated rating 
curve [47]. The two-year flow hydrograph for Mara Mine (Figure 2) highlights two distinct flood 
periods, namely in November/December and April/May. During these events a maximum discharge 
of 475 m3·s 1 was recorded. The floods are generated by surface runoff in response to convective 
rain events of several mm per day across the Mara River Basin. 

2.2.2. Vegetation Characterization 

A detailed vegetation survey was done in October 2010 and September 2013. During the 2010 
field campaign, the vegetation data collected in each site included type of vegetation/land use (e.g., 
grassland, dense green papyrus and shrub/thicket). It was not possible to undertake the collection of 
the wetland ground reference data concurrently with the acquisition dates of the images. However, 
information from locals suggests that there were no significant changes on land cover between the 
image acquisition and the fieldwork dates. It was considered that the wetland floodplain grassland 
changes significantly between wet season and dry season due to rainfall and grazing by herds of 
cattle. The main objective of the 2010 field visit was to collect data to support wetland vegetation 
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classification for the study area. 300 ground truth points were recorded and classified in the field 
(Table 1). Figure 3 provides sample photos of vegetation in the area. 

Table 1. Field vegetation classification in 2010. 

S/No Land Cover Class Land Cover Characteristics 

1 Water 
Open water: Water without plant cover  
(in rivers, lagoons, oxbow lakes, ponds etc.) 

2 Swamps 
Swamps: Sediment deposited areas,  
burned papyrus vegetation, sediment laden waters 

3 
Partially  
submerged vegetation 

Sparse green vegetation: vegetation which include papyrus,  
grassland with water background or partially submerged 

4 Papyrus/thicket 
Dense green vegetation: Dark green vegetation which  
includes green papyrus, trees, bushes 

5 Regenerated papyrus/shrub 
Very sparse green vegetation: Regenerated vegetation which 
include papyrus, grassland with water background or partially 
submerged 

6 
Eichorrhoea 
crassipes/grassland 

Grassland: Eichoria crassipes vegetation, lush grassland, 

7 Agriculture/bare land 
Bare land: open Bare land, settlement, houses,  
open farms, dry grass, clouds 

Total 

During the 2013 field visit, the objective was to collect independent data sets for vegetation 
attributes to derive Plant Area Index (PAI) for the herbaceous pattern vegetation (papyrus and reeds) 
and Fractional Vegetation Cover (FVC) for the arboreal and shrub classes (shrub/thicket and 
floodplain forest).  

2.2.3. Landsat 5 TM Imagery and Preprocessing 

Landsat Thematic Mapper (TM) is a multispectral scanning radiometer that was carried onboard 
Landsat 4 and 5. The TM sensors have provided nearly continuous data in the period of  
1 March 1984–05 June 2013. TM data was collected in seven bands, which cover the visible,  
near-infrared, shortwave, and thermal infrared spectral bands of the electromagnetic spectrum. All 
bands have a resolution of 30 m except the thermal band that has a resolution of 120 m, with a swath 
width of 185 km. The thermal band was excluded during the present analysis due to its coarser spatial 
resolution and the different physical processes involved in the observation. Landsat provides data 
acquisition over the Earth’s landmass with a repeat cycle of 16 days. 
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Figure 3. Photos showing different land cover types in the area. 

From 2009 to 2013, there are several Landsat images present in USGS Global Visualization 
Viewer (GLOVIS) database (http://glovis.usgs.gov). Preliminary observation was used to select 
cloud free images during non-flooded seasons. Normalized Difference Vegetation Index (NDVI) for 
each image was determined and used to select images that can be used to describe vegetation classes 
in the study area. The Landsat TM acquired on 11 June 2009 was selected for vegetation mapping in 
the Lower Mara Basin. The image was atmospherically corrected using the ATCOR module in the 
ERDAS Imagine software and geometrically transformed with tie points onto a topographic map of 
the area. A subset of the area was extracted for the further analysis. 

2.2.4. Radarsat 2 Imagery and Preprocessing 

The RADARSAT-2 satellite was launched on 14 December 2007 by the Canadian Space Agency 
(CSA). It is carrying a SAR sensor operating at a center frequency of 5.405 GHz (C-band). The 
system is capable of acquiring backscatter observations ( °) in various imaging modes including 
single (HH or VV) polarization; dual co- and cross-polarization combinations (HH/HV, VV/VH) 
with several image swaths. The imagery used for the present study is comprised of a series of  
12 VV/VH polarized RADARSAT-2 wide swath mode images from April 2011 to August 2012. The 
SAR images were received as preprocessed level-1 SAR Georefferenced Fine Product (1SGF) with 
25 m × 28 m resolution for a 150 km × 150 km area covering a view angle range of 20–45 degrees. 
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The Next ESA SAR Toolbox (NEST) was utilized to process the Radarsat-2 data sets to calibrated 
backscatter ( °) products through application of the Range Doppler terrain correction utility. A 
median filter with a 5 × 5 kernel size was applied to the ° data sets to suppress the speckle noise 
inherent to the SAR data. After filtering, the images were reprojected to UTM zone 36 WGS84 
coordinate system subsetted for the area of interest and automatically co registered. 

3. Methods 

3.1. Overall Framework 

Developing large-scale hydraulic models requires appropriate data to describe flow resistance in 
the model domain. There is a need to investigate how friction component can be parameterized to 
improve model performance hence to minimize the efforts for calibration and validation of hydraulic 
models. The approach used in this study includes derivation of Manning’s coefficients derived from 
the spectral and radar images by combining Manning’s LUT and relative surface roughness. Landsat 
imagery was used to derive vegetation classes to which minimum and maximum Manning’s 
roughness coefficients were assigned from literature. The SAR imagery was used to determine Ks 
from cross-polarization ratio. The spatial distribution of the hydraulic roughness values was then 
determined from combining Ks maps and Manning’s LUT values. The roughness was averaged per 
vegetation class to obtain mean roughness values per vegetation class. A FLO-2D hydraulic model 
was set up to check the improvement of model performance when different scenarios of roughness 
parameterization were implemented. The overall framework is summarized in Figure 4 below. 

3.2. PAI and FVC Retrieval 

The PAI and FVC are ratios describing the fraction of area covered by vegetation per unit area of 
ground surface. The higher the PAI or the FVC the higher the vegetation density is, hence the higher 
is the hydraulic roughness. PAI was determined from 35 sites for herbaceous vegetation using the 
gap fraction approach. In papyrus and reed vegetation, four to five vertical photographs were taken 
below the canopy at each site; an approach of determining the vegetation gap fraction. This method is 
based on simplified models of light transmission into the canopy. A variety of approaches for estimating 
PAI using direct and indirect methods were presented by Bréda [49], Jonckheere et al. [50] and  
Weiss et al. [51]. Vegetation gap fraction (G) is defined as the fraction of sky seen from below the 
canopy [49–52]. Gap fraction is related to PAI ( . Images were processed using a 
segmentation algorithm implemented in the ILWIS software. The segmentation process was developed 
to classify open sky pixels and cloudy sky pixels according to their chromatic values. The segmentation 
process is simply based on the pixels intensity assuming that vegetation elements appear darker than 
the sky. Figure 5a shows a sample image of vertical photographs was taken below the vegetation 
canopy. Figure 5b shows the results of image after segmentation process, dark areas are areas covered 
by vegetation and white areas are clasified as open sky. Areal average PAI was calculated for each 
sampled location. FVC was determined for 10 plots of 100 m × 100 m in the arboreal and shrub land 
cover classes. The crown base diameters of each vegetation type were measured with measuring tape 
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at each plot. The FVC was calculated as the fraction of total surface area covered by arboreal and shrub 
vegetation. Results are summarized in Table 2. 

 

Figure 4. Overall framework of research approach. 

 

Figure 5. Canopy photos at a reed site (a) Vertical photo taken below the canopy (b) 
image after segmentation. 

Table 2. Plant Area Index (PAI) and Fractional Vegetation Cover (FVC) measured in situ at 
different sites. 

 
Vegetation Type No of Samples PAI (1) and FVC (2) 

  Min Max Mean Standard Deviation 

1 
Papyrus 15 0.335 0.867 0.710 0.121 

Reeds 20 0.223 0.871 0.725 0.145 

2 Shrub/Thicket 10 0.401 0.860 0.674 0.140 
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3.3. Vegetation Classification from Landsat TM Imagery 

Supervised classification was done to determine vegetation types in the study area. Visual 
interpretation of the Landsat TM true color composite bands (321) and combination of NDVI was 
used to assist in the collection of the training set for classification. Training sites for each vegetation 
class were identified and a classification scheme prepared for classification process. Maximum 
likelihood classification was done using the ERDAS Imagine 2013 software, resulting in 7 vegetation 
classes. The result was cleaned by applying a median filter of 5 × 5 pixels to remove isolated pixels. 
The accuracy assessment was done as recommended by Congalton and Green [53], using 300 data 
points from the field survey, which were not used in the training process. 

3.4. Vegetation Class Characterization Based on Backscatter Statistics 

3.4.1. SAR Images 

It is well understood that the backscatter ( °) is affected by the dielectric properties of the scattered 
surface or volume (in our case the wetland) and the scattering geometry. Due to the large difference 
between the dielectric constants of water and the other materials, the backscatter is determined by 
the water content in as well as on the vegetation and the soil, furthermore, the vegetation morphology 
and the land surface roughness. To investigate the vegetation dynamics in the study area and period 
visually, an RGB color composite for Vertically transmitted and Vertically received signals (VV 
polarization) and Vertically transmitted and Horizontally received signals (VH polarization) 
(Green—VH polarization; Red and Blue—VV polarization) was made each of the available twelve 
images in total (Figure 6a–l). It can be observed that within the wetland, the greenish colors represent 
small differences between VV and VH backscatter signals, which indicate the presence of  
vegetation [22]. The reddish color highlights large VV versus VH backscatter, associated with bare 
land. The black areas refer to low VV and VH backscatter, related to smooth surfaces, usually open 
water bodies and flooded areas. In order to avoid the bare lands and the effect of temporary flooding 
on the backscatter of vegetated areas, five SAR scenes with high level of reddish and black coloration 
on floodplain were excluded from the further analysis. Rainfall and river discharge data has been 
used also to confirm flooded situations in the image selection. 

From the visual interpretation of these SAR images, backscatter variations in densely vegetated,  
deep-rooted areas are more stable than in less dense areas (e.g., grass) during different seasons. In 
densely vegetated areas the backscatter response is more or less constant during all seasons because 
in the floodplain, they can maintain their water content even during the dry season. Floods and 
rainfall events are also a major cause of high backscatter variation in flood plains as can be seen in 
the images acquired on the dates of 12 March 2011 and 18 May 2012. 
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Figure 6. Sub figures a–l above shows RGB color composite images for 12 Radarsat-2 
SAR images acquired over the Lower Mara Basin. Image aquisation dates and average 
daily river discharge values are shown in the bottom of each image. RGB color composite 
imageries are attributting to VV, VH and VV polarization for Red, Green and Blue 
channels respectively. 
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Figure 6a–l shows RGB color composite for 12 SAR imagery used in this study and river 
discharge data for the Mara Mine gauging station. These data were used to aid selection of images 
for the subsequent analysis of vegetation attributes. Initial temporal variability assessment was done 
on all images and it was observed that vegetated areas affected by flood cannot be separated clearly 
from grassland areas. Therefore uniformity of rainfall and flood spread within the images was used 
as the key criteria of selection of images. The minimum number of images for multitemporal analysis 
was also limited as recommended by Maghsoudi et al., (2011) [54]. From Figure 6, SAR scenes of 
2 December 2011, 7 March 2012, 24 April 2012, 18 May 2012 and 22 August 2012 were excluded 
from the vegetation analysis because of the influence of floods and rainfall that caused high temporal 
variability of the backscatter. 

3.4.2. Backscatter Characterization and Statistics 

The estimators of temporal variability of multitemporal SAR data sets include standard deviation, 
normalized standard deviation, saturation, maximum-minimum ratio of ° in dB [55]. In this study, 
we used mean, maximum and standard deviation of the seven selected SAR images. The mean VV 
and VH polarization does not provide clear separation between vegetation classes. In Figure 7a,b, 
the standard deviation identifies the flooded vegetation formations and monitor non-flooded 
vegetation phenology. The Figure 7a,b for standard deviation maps of VV and VH polarized ° 
respectively shows a separation between densely vegetated areas (papyrus, floodplain forest) and 
other less vegetated areas. Standard deviation of ° measures the variability encountered in the 
polarimetric SAR images. In the agricultural fields, the temporal variability is high because of the 
influence of soil moisture changes, vegetation phenology and growth, cultivation practice  
(e.g. grazing). 

 

Figure 7. Standard deviation of the backscatter (in dB) for (a) Vertically transmitted and 
Vertically received signals (VV polarization) and (b) Vertically transmitted and 
Horizontally received signals (VH polarization) on the study area characterizing 
temporal variability of the backscatter. Areas with higher vegetation have low standard 
deviation than areas with shorter vegetation e.g., grasslands. 
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High mean ° and low standard deviation was observed in aquatic vegetation and 
forest/thicket/papyrus vegetation areas. In floodplain grassland and less dense vegetation 
intermediate ° and high standard deviation were observed. Agricultural/grassland areas outside the 
floodplain are characterized by low ° and high standard deviation. Figure 7 shows the temporal 
variability statistic (standard deviation) for the analyzed SAR imagery. 

Figure 8 shows temporal variation of backscatter statistic on vegetation types in some specific 
selected sites. It can be observed that standard deviation provides a clearer separation between 
vegetation types than the mean backscatter values. 

 

Figure 8. Backscatter statistics for different vegetation types for (a) Standard deviation 
(std) for VV and VH polarization (b) Mean for VV polarization. Sigmao represents °. 
Sigmao VV std is standard deviation of VV polarisation; Sigmao VV mean is average of 
VV polarisation and Sigmao VH std is standard deviation of VH polarization for the 
selected seven images. 

3.5. Determination of the Spatial Distribution of the Hydraulic Roughness 

3.5.1. Concept 

Hydraulic vegetation roughness refers to the resistance force exerted by vegetation on water 
flowing over or through it [23]. Rough vegetation reduces water flow velocity and leads to higher 
water levels and thus increases flood risks. Height and density of submerged vegetation and density 
of emergent vegetation are the key characteristics from which roughness parameters in hydraulic 
models are derived. The parameter describing emergent vegetation, such as forest, is vegetation 
density [56]. Hydraulic vegetation density is the sum of the projected plant areas in the direction of 
the flow per unit volume. The parameters describing submerged vegetation, such as grassland, reed, 
or herbs are vegetation height and density [57]. The spatial distribution of these vegetation 
characteristics is an essential input for hydrodynamic models. 
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SAR data was investigated for quantitative assessment of floodplain relative hydraulic roughness, 
which is related to vegetation height and density. Grassland is hydraulically smooth, forests and 
dense shrubs are hydraulically rough [15]. This concept is analogous where grassland had high 
temporal variability of backscatter and forests have low temporal variability of VH polarized ° 
which describes volume scattering mechanism (dB m 3). In addition variability of VV polarized ° 
can describe surface scattering mechanism (dB m 2). The variability of the ratio of volume to surface 
backscattering can describe vegetation density differences (m 1) within a vegetation type. This ratio 
is described by the cross-polarization ratio and its exponential inversion provides values at a scale of 
0 to 1, describing smooth to rough surface within the vegetation class, further on referred to a relative 
surface roughness. 

3.5.2. Implementation 

Cross-polarization ratio of the seven SAR images and their descriptive statistical parameters were 
calculated. It was observed that the standard deviation of the cross-polarization ratio can be used to 
determine relative surface roughness variations within the vegetation class. The inversion was based 
on the exponential Markov Random Fields (MRF) model. The MRF is a global model uniquely 
determined by a local statistical description of a single image or multispectral images for image 
pattern analysis, texture modeling and image classification [58–64]. In this paper, we use MRF model 
to determine relative surface roughness from standard deviation of cross-polarized ratio of series of 
SAR imagery. The empirical inversion technique used for series of cross-polarization ratio images 
based on Equation (1). The equation assumes that the relative roughness parameters follow the 
Markovian probability density function (pdf). Equation (1) was used to determine the relative surface 
roughness map of the study area. 

 (1)

 (2)

 (3)

where; 

 = relative surface roughness [-] 
 = correction factor [-], for this case considered to be 1 for the Markovian pdf 

 = standard deviation of cross-polarized ratio of series of SAR imagery [dB] 
 = number of SAR imagery used in analysis 
 = cross-polarization ratio of SAR imagery i 

 = mean of cross polarization ratio of SAR imagery used in analysis 
 = VH polarization of SAR imagery i [dB] 
 = VV polarization of SAR imagery i [dB] 
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3.5.3. Hydraulic Roughness Map 

The relative roughness was used to aid the spatial parameterization of the Manning’s roughness 
within the vegetation classes. Numerous researchers give guidance on selection of Manning’s values 
for various vegetation classes [6,8,12,15,65]. After a careful review and investigation of Manning’s 
values by comparing the study site vegetation characteristics and those given in the literature, the 
value ranges shown in Table 3 were adopted for the study area. These values should not be considered 
as the actual, since their determination is based on vegetation classes and Manning’s values found in 
the literature. Table 3 is LUT for Manning’s coefficient ranges for each vegetation class. 

Table 3. Manning’s roughness ranges for different vegetation classes referred from 
Chow [15] and O’Brien [8]. 

  a b c 
No Vegetation Class n min,c (m 1/3/s) n ave,c (m 1/3/s) n max,c (m 1/3/s) 
1 Water 0.02 0.03 0.085 
2 Swamps 0.09 0.2 0.34 
3 Partially submerged vegetation 0.17 0.3 0.48 
4 Papyrus/ Thicket 0.17 0.3 0.8 
5 Regenerated papyrus/Shrub 0.2 0.4 0.4 
6 Eichorrhoea Crassipes/ Grassland 0.2 0.3 0.3 
7 Agriculture/ bare soil 0.1 0.2 0.3 

Spatial hydraulic roughness was calculated by Equation (4) below. This equation assumes a linear 
increase of Manning’s coefficient with relative surface roughness within the vegetation class. 

 (4)

where; 

 = Manning’s roughness value for a cell within a vegetation class (m 1//3/s) 
 = minimum Manning’s roughness value for a cell within a vegetation class (m 1//3/s) 
= maximum Manning’s roughness value for a cell within a vegetation class (m 1//3/s) 
 = relative surface roughness value for a cell within a vegetation class (-) 

 = minimum relative surface roughness value for a cell within a vegetation class (-) 
= maximum relative surface roughness value for a cell within a vegetation class (-) 

3.6. Hydraulic Modeling 

The derived hydraulic parameters were used in the FLO-2D River modeling software. FLO-2D  
model is a two-dimensional (2D) hydrodynamic model developed by FLO-2D Software  
Inc—Arizona, USA (http://www.flo-2d.com). Flood routing in two dimensions is handled through a 
numerical integration of the equations of motion and volume conservation within each cell in eight 
directions. The simple volume conservation governing equations are written as general constitutive 
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fluid equations, which include the continuity equation and the dynamic wave momentum  
equation [8]. 

The 2D hydrodynamic model was used to develop a floodplain inundation model for a 120 km 
river reach at the outlet of Mara river basin (Figure 9). The main channel was represented by a  
one-dimensional linear channel based on fifty surveyed river cross-sections and the floodplain 
topography was represented by a calibrated digital terrain model based on Advanced Space borne 
Thermal Emission and Reflection Radiometer Global Digital Elevation Model version 2 
(ASTERDEM). The ASTER DEM was pre-processed to remove noise by using 2D Kalman filtering 
techniques [66,67]. The floodplain model domain was discretized into 100 m by 100 m grid cells. 
The upstream model boundary was represented as a daily time-flow boundary condition at Mara 
Mine (5H2) station (3) and at Tigithe Bridge (2) while the downstream boundary condition as the 
levels of Lake Victoria (6). An internal river gauge at point 5 was used for model performance 
assessment (Figure 1). 

The model was calibrated by determining optimum floodplain np and channel nc roughness 
parameters. The optimum floodplain plain roughness parameter was found by setting river channel 
roughness at 0.03 m 1/3/s. The optimum value of river channel roughness was obtained from instream 
sediment characteristics using median sediment particle diameter in meter and applying strickler 
formula developed in 1923 [68] and then adjusted accordingly by factors proposed by Arcrement and  
Schneider [16]. After which the calibrated river channel roughness parameter was determined 
through sensitivity analysis by varying its parameters while maintaining floodplain roughness at 
optimized value and evaluating the model performance. The model performance was evaluated at 
the internal gauging station using daily water level records. Model performance was evaluated based 
on the fit between simulated and observed water levels, using the Root Mean Square Error (RMSE), 
the Nash-Sutcliffe model efficiency coefficient (E) and the index of agreement (d) [69,70]. Different 
parameterizations of surface roughness were evaluated by comparing model performance. The three 
water surface simulations from the hydraulic model were analyzed to find out if use of spartial 
hydraulic roughness improves the modeling results hence a better model. The model results analyzed 
to show model improvement included; (1) Optimum floodplain roughness (np) with channel roughness  
nc = 0.03 m 1/3/s; (2) calibrated floodplain roughness (np) and channel roughness nc; and (3) calibrated 
channel roughness nc and spatial Manning’s coefficients as derived with aid of relative surface 
roughness. A six-month period was simulated from 30 January 2004 to 30 June 2012 including a 
major flood event to capture model behavior during floods. 

4. Results 

4.1. Riparian Vegetation Mapping 

The vegetation mapping accuracy assessment results are shown in Table 4. The overall accuracy 
for the seven classes was 69% with a Kappa Coefficient of 0.624. The resulting land cover map of 
the study area is presented in Figure 9. Only a relatively low overall accuracy could be achieved, due 
to the mixed character of some vegetation classes (Table 4). Especially the papyrus, the most 
dominant vegetation type can be mixed with other types. At some areas of the floodplain, dense and 
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thick papyrus is the dominant cover (Papyrus/thicket), mapped with a relatively high producers 
accuracy. In the upper reach, dense thicket and shrub areas could not be separated well from the 
papyrus and regenerated papyrus, due to their spectral signature resemblance and patchy distribution. 
In Figure 9, it can be seen that the dense papyrus vegetation is dominantly present near the main river 
channel. The class of partially submerged vegetation and papyrus has lower mapping accuracies due 
to its patchy distribution, especially in the upstream part of the wetland. Swampy areas are areas 
dominated by frequently flooded grasslands, so during the dry season these areas characterized by 
healthy grass, which could be mapped with the lowest accuracies among the natural wetland 
vegetation classes. Vegetation class 7 (agriculture/bare land) was virtually having the highest 
classification accuracy, but this is represented with a very small proportion in the wetland. Due to 
the above-described limitations, we accepted this result, since the classification accuracy of all 
classes was above 60%. Some other methods, such as data fusion between optical and SAR  
imagery may have produced better results, since SAR can provide structural attributes of  
different vegetation patterns [71]. Understanding the limitations, these results were used in the 
roughness parameterization. 

 

Figure 9. Vegetation map of Mara wetland floodplain showing seven classes of  
vegetation types. 
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Table 4. Supervised Classification Accuracy Assessments. 

S/No Class Name Reference Classified Correct 
Producers  

Accuracy (%) 

User  

Accuracy (%) 
Kappa 

1 Water 11 9 6 54.6 66.67 0.654 

2 Swamps 31 34 21 67.7 61.76 0.574 

3 Partially submerged vegetation 61 58 38 62.0 65.52 0.567 

4 Papyrus/thicket 75 78 54 72.0 69.23 0.589 

5 Regenerated papyrus/shrub 56 52 37 66.0 71.15 0.645 

6 Eichorhoea crassipes/Grassland 37 43 29 78.38 67.44 0.628 

7 Agriculture/Bareland 29 26 22 75.86 84.62 0.829 

 TOTAL 300 300 207 Average 0.624 

Overall Classification Accuracy = 69.00%, Kappa Coefficient = 0.624. 

4.1. Relative Surface Roughness 

Relative surface roughness results shows that densely vegetated areas have higher values than less 
dense areas. For example densely vegetated papyrus vegetation and savannah grasslands have Ks of 
the same order. These indicate that the Ks contains vegetation characteristics that can be used for 
spatial hydraulic roughness parameterization. Figure 10 below shows map of Ks at a scale of 0 to 1. 

 

Figure 10. Relative surface roughness ( of the study area on a scale of 0 to 1. 
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Figure 11. Correlation between Plant Area Index (PAI) and Fractional Vegetation Cover 
(FVC) against relative surface roughness. The correlation coefficient for plots (a), (b), 
are 0.03, 0.08, respectively. 

Direct field verification of Manning’s roughness values was practically not feasible. Nevertheless, 
the derived remote sensing based relative surface roughness was correlated to PAI and FVC to check 
if these vegetation attributes are reflected in the SAR relative surface roughness values. The relative 
roughness and Manning’s roughness were extracted at locations where PAI and FVC were 
determined on the site. These values were plotted to determine whether they are correlated  
(Figure 11). Within vegetation sampled, PAI or FVC versus relative roughness has an agreement in 
the shape but week positive linear correlation. These show that relative surface roughness may not 
be directly related to PAI or FVC (Figure 11a,b). It can support determination of vegetation attributes 
variations within the vegetation type that is directly related to spatial hydraulic roughness. From 
Figure 11 both vegetation types have relative surface roughness and Manning’s roughness within a 
range of 0.6–0.8.These results does not prove beyond reasonable doubt that there exists a relationship 
between PAI or FVC and Ks from the few data points collected. 

The plots show good agreement in data spread but low correlation. The correlation between PAI 
and FVC against relative surface roughness was obtained to be 0.03 and 0.08, respectively, so it is 
not possible to relate Ks to these parameters, which are easy to define in the field. The major limitation 
is that the backscatter is defined by the surface and the whole volume of the vegetation canopy, whilst 
the effective hydraulic roughness on the forested floodplains is defined by the lower part of the 
vegetation, since water levels are usually under the crown base height. 

4.2. Roughness Map 

There are overlaps of relative surface roughness ranges between land cover classes. The minimum 
relative roughness in this case is between 0.09 in swamps to 0.432 in water bodies (with waves), 
other classes fall within this range. The maximum relative surface roughness for all the classes lies 
between 0.89 for swamps and 0.92 for open water bodies. The standard deviation of relative surface 
roughness was observed to be below 0.06 for all classes except on swampy and grassland areas with 
standard deviation of the relative roughness values of 0.68 and 0.38, respectively. The average 
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relative surface roughness values for all the seven classes were between 0.6 and 0.78. The lowest 
mean was recorded in swampy areas and highest mean in water bodies. Table 5 below shows 
minimum, average, maximum Ks and calculated average Manning’s coefficient per vegetation class. 

Table 5. Relative surface roughness and calculated average Manning’s for different 
vegetation classes. 

No Vegetation Class (Ks) min,c (-) (Ks) ave (-) (Ks) max,c (-) 
Calculated Average 

Manning’s  
Coefficient (m 1/3/s) 

1 Water 0.43 0.78 0.92 0.07 

2 Swamps 0.09 0.68 0.89 0.27 
3 Partially submerged vegetation 0.20 0.69 0.89 0.39 
4 Papyrus/Thicket 0.18 0.71 0.92 0.62 
5 Regenerated papyrus/Shrub 0.41 0.70 0.89 0.32 
6 Eichorrhoea Crassipes/Grassland 0.20 0.69 0.91 0.27 
7 Agriculture/bare soil 0.27 0.70 0.90 0.24 

 

Figure 12. Spatial Manning’s roughness coefficient (m 1/3/s) derived from Landsat TM 
based vegetation map and relative surface roughness from SAR imagery. 

The spatial roughness map was produced using Equation (4). The result in Figure 12 indicates that 
water bodies have low values while densely vegetated papyrus vegetation has higher values. This 
can give a qualitative indication that the approach used in determination of the spatial hydraulic 
roughness is appropriate. 

4.2. Hydraulic Modeling Results 

Calibration and sensitivity analysis of single Manning’s roughness on model performance was 
evaluated based on Nash—Sutcliffe efficiency criterion (E) and Root mean square error (RMSE). 
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The model was run for a range of single values of floodplain friction from between 0.2 m 1/3/s and  
0.85 m 1/3/s at increment of 0.05 m 1/3/s (around 14 simulations in total). The results are shown in  
Table 6 and Figure 13 shows the model performance during the flood event from 21 April to 30 June 
2012. The results indicate that at the internal gauging station 2, the single floodplain friction value 
for optimum performance is 0.65 m 1//3/s, which yield 0.92 and 0.02 m for E and RSME, respectively. 

Table 6. Model performance parameter as per different single friction  
roughness parameterizations. 

Run No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
N (m 1//3/s) 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 

E 0.22 0.28 0.43 0.50 0.56 0.65 0.74 0.84 0.89 0.92 0.84 0.74 0.60 0.50 
RMSE (m) 0.35 0.25 0.19 0.16 0.13 0.092 0.08 0.062 0.03 0.02 0.031 0.04 0.075 0.12 

The modeling results due to hydraulic roughness parameterizations were evaluated based on  
the simulated hydrographs for (1) optimum floodplain roughness (np) with channel roughness  
nc = 0.03 m 1/3/s(SWL1); (2) calibrated values for both floodplain roughness(np) and channel 
roughness nc (SWL2); and (3) calibrated channel roughness nc and spatial Manning’s coefficients as 
derived with aid of relative surface roughness(SWL3). The emphasis was put in the capturing of 
flood events when the flows are spread in the floodplain. The results of three simulations for the  
six-month period of from 30 January 2004 to 30 June 2012 including a major flood event are shown 
Figure 14 below. A bank-full level at internal gauging station 5 is provided in the figure below for 
reference purposes of flood wave characterization above which flow extends to the floodplain. The 
results discussed include results from partially calibrated model (SWL1), Fully calibrated model 
(SWL2) and simulation using spatial Manning’s coefficients as derived with aid of relative surface 
roughness (SWL3). 

 

Figure 13. Calibration and sensitivity analysis of single friction roughness on model 
performance (SWL1). Friction roughness (n), Root Mean Square Error (RMSE) for 
observed and simulated water level hydrographs. 
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The resulting water stages are shown in Figure 14. OWL is the observed water level at the gauging 
station. SWL1 is simulated water levels with optimum floodplain roughness (np) with channel 
roughness nc = 0.03 m 1/3/s, SWL2 is simulated water levels with calibrated values for both floodplain 
roughness np = 0.65 m 1/3/s and channel roughness nc = 0.021 m 1/3/s and SWL3 is simulated water 
levels with calibrated channel roughness nc and spatial Manning’s coefficients as derived with aid of 
relative surface roughness. 

The model performance for the three simulations results is presented in Table. 7. The overall 
performance for scenario 3 for the whole simulated period is superior as it is proved by the better 
performance statistics of E = 0.97 compared to calibrated model E = 0.94. The use of spatial 
roughness parameterization improved the model performance in comparison to the calibrated model 
but also improved model performance significantly in capturing low flows stages. For this case it can 
be seen that spatial roughness parameterization can improve flood wave progression modeling without 
calibrating the Manning’s roughness value for the whole floodplain. Scenarios 2 and 3 slightly 
overestimate the water levels, but the errors are higher in capturing the peaks in scenario 1. In 
scenario 2 and 3, water stages at low flows are overestimated this may be explained by uncertainty 
of accuracy of topographic data and downstream boundary condition. At high flood events the 
hydrographs are captured well at high flows for SWL1 and SWL2 simulations. During flood events 
or periods the calibrated model and that parametrized using spartial roughness derived from relative 
roughness performed equally. The results in Figure 13 also indicate that the model is sensitive to 
river channel roughness parameter. 

 

Figure 14. Observed and simulated hydrographs for three simulations SWL1, SWL2  
and SWL3. 

During low flows all the simulated water levels are higher than the observed water levels. This 
may be due to the simplified parameterization of the river channel in the model among others. During 
flooding the water inundates the floodplain, where the parameterization of the resistance against flow 
in the vegetated riparian areas is becoming important in simulating the water levels. 
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Table 7. Model performance parameter as per different Manning’s roughness 
parameterizations. SWL1 is simulated water levels with optimum floodplain roughness 
(np) with channel roughness nc = 0.03 m 1/3/s, SWL2 is simulated water levels with 
calibrated values for both floodplain roughness (np) and channel roughness nc and SWL3 
is simulated water levels with calibrated channel roughness (nc) and spatial Manning’s 
coefficients as derived with aid of relative surface roughness The values outside the 
bracket represent the overall performance for the period of 21 April 2004 to 30 June 
2012, whilst the ones in the brackets represent model evaluation during flood event from 
21 April 2004 to 30 June 2012. 

Performance Criteria Scenario 1 (SWL1) Scenario2 (SWL2) Scenario 3 (SWL3) 
Nash—Sutcliffe efficiency criterion (E) 0.75 (0.85) 0.95(0.98) 0.97 (0.96) 

Index of agreement (d) 0.93 (0.97) 0.98(0.99) 0.99 (0.99) 
Bias (%) 0.036 (0.022) 0.016(0.006) 0.009 (0.005) 

STEYX (m) 0.185 (0.188) 0.085(0.086) 0.106 (0.149) 
RMSE (m) 0.22 (0.05) 0.047(0.006) 0.023 (0.11) 

Coefficient of Determination (R2) 0.95 (0.95) 0.99(0.99) 0.98 (0.97) 

5. Conclusions 

The overall performance of scenario SWL1 is simulated water levels with optimum floodplain 
roughness (np = 0.65) with channel roughness nc = 0.03 m 1/3/s was characterized with E = 0.75 and  
R2 = 0.95, which was improved in SWL2 during full model calibration with calibrated values for 
both floodplain roughness np = 0.65 m 1/3/s and channel roughness nc = 0.021 m 1/3/s. In SWL2 
simulations the model performance was observed to increase to E = 0.95 and R2 = 0.99. When 
spatially distributed Manning values derived from SAR relative surface values were parametrized in 
the model, the model also performed well and yielding E = 0.97 and R2 = 0.98. Improved model 
performance using spatial roughness shows that spatial roughness parameterization can support flood 
modeling and provide better flood wave simulation over the inundated riparian areas equally as 
calibrated models. Important water level differences were observed between the three roughness 
coefficient parameterizations. Nevertheless, there was no major difference in the timing of the flood 
peak. The calibration of Manning’s roughness value (Figure 13) that optimum value for friction 
roughness is 0.65 m 1//3/s which model performance of E = 0.92 and RMSE = 0.02 m. Using spatial 
roughness for model parameterization also yielded values E = 0.85 and RMSE = 0.05 m. This shows 
that spatial parameterization of roughness using SAR properties may improve the model performance 
equally as calibrated model. These results are limited to the model setup characteristics that include 
grid size, river channel presentation, and stability criteria. Further sources of error can be found in 
the inherent inaccuracies in the satellite image processing steps. First of all, the unavoidable 
inaccuracies of the optical satellite image classification. This contributes to the observed overlaps 
between the relative roughness ranges of the different vegetation types. Speckle in SAR images was 
suppressed by a median filtering, but this cannot completely remove this noise, which results in an 
unknown level of inaccuracy in the calculated relative surface roughness values. 
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The reasons for the observed discrepancies may be as complex as the floodplain itself, which will 
need careful further research. First of all, the (in) accuracy of the topographical data and the model 
mesh resolution need to be investigated. In addition, topography interacts with spatially-distributed 
friction in a complex manner in the timings of the flood wave. In some studies, adaptive time-step of 
storage cell models have been shown to increase sensitivity to floodplain friction [72]. For the above 
results the model performance was good when calibrated and spatial roughness were implemented 
in the model. The added advantage of spatial parametrization is on the simulation time when 
calibration requires more simulations. The model needs further validation of the spatial distribution 
of the simulated inundation using satellite image based actual flood maps. The spatial inundation 
extent during peak flood event needs to be validated using satellite imagery. In addition, topography 
and spatially-distributed friction interacted with the flow in a complex manner, which could not be 
fully parameterized all over the floodplain, but our study made an important step in understanding 
and predicting flood inundation dynamics in riparian areas. Further research is still required to 
investigate if complex hydrodynamic models (e.g., DELFT 2D/3D, MIKE 21, SOBEK) utilizing full 
Saint Vennant’s equations could perform better than FLO-2D in data scarce areas. 

Usefulness of SAR for spatial hydraulic parameterization for hydraulic modeling has been shown 
in this paper. Temporal variation analysis of backscatter can support spatial hydraulic roughness 
parameterization of finite volume conservative hydrodynamic models. The use of spatially-distributed 
friction (Manning’s) coefficients as presented here in detail have not been shown in previous studies. 
Spatially distributed friction coefficients have important effects on hydrodynamic model 
performance affecting predicted flood depths. These results show that quantification of spatially 
distributed Manning’s roughness can equally improves the performance of hydraulic models as 
calibrated model for large flood plains. These models are computationally expensive and cannot be 
automatically calibrated for large floodplains. As a summary, we can state that our study made a step 
in understanding and predicting flood inundation dynamics in riparian areas based on SAR images, 
those can provide information even under thick cloud cover. With the upcoming availability of new 
remote sensing data with higher revisiting frequencies, e.g., Senitel-1 with its SAR sensor and 
Sentinel-2 with its high-resolution optical data, a unique opportunity opens in monitoring riparian 
ecosystems for supporting flood modeling with more accurate data for the parameterization of 
hydraulic resistances. 
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Hydrological Impacts of Urbanization of Two Catchments in 
Harare, Zimbabwe 

Webster Gumindoga, Tom Rientjes, Munyaradzi Davis Shekede, Donald Tendayi Rwasoka, 
Innocent Nhapi and Alemseged Tamiru Haile 

Abstract: By increased rural-urban migration in many African countries, the assessment of changes 
in catchment hydrologic responses due to urbanization is critical for water resource planning and 
management. This paper assesses hydrological impacts of urbanization on two medium-sized 
Zimbabwean catchments (Mukuvisi and Marimba) for which changes in land cover by urbanization 
were determined through Landsat Thematic Mapper (TM) images for the years 1986, 1994 and 2008. 
Impact assessments were done through hydrological modeling by a topographically driven  
rainfall-runoff model (TOPMODEL). A satellite remote sensing based ASTER 30 metre Digital 
Elevation Model (DEM) was used to compute the Topographic Index distribution, which is a key 
input to the model. Results of land cover classification indicated that urban areas increased by more than 
600 % in the Mukuvisi catchment and by more than 200 % in the Marimba catchment between 1986 
and 2008. Woodlands decreased by more than 40% with a greater decrease in Marimba than 
Mukuvisi catchment. Simulations using TOPMODEL in Marimba and Mukuvisi catchments 
indicated streamflow increases of 84.8 % and 73.6 %, respectively, from 1980 to 2010. These 
increases coincided with decreases in woodlands and increases in urban areas for the same period. 
The use of satellite remote sensing data to observe urbanization trends in semi-arid catchments and 
to represent catchment land surface characteristics proved to be effective for rainfall-runoff 
modeling. Findings of this study are of relevance for many African cities, which are experiencing rapid 
urbanization but often lack planning and design. 

Reprinted from Remote Sens. Cite as: Gumindoga, W.; Rientjes, T.; Shekede, M.D.; Rwasoka, D.T.; 
Nhapi, I.; Haile, A.T. Hydrological Impacts of Urbanization of Two Catchments in Harare, Zimbabwe. 
Remote Sens. 2014, 6, 12544-12574. 

1. Introduction 

Understanding the impacts of land conversion and land cover changes on the hydrological cycle 
has become a global concern in view of the increasing urban populations [1,2]. Studies by [3,4] 
concluded that the effects of land conversions on river flows are of major interest to water resource 
managers and hydrologists as they plan, manage and develop water resources. [5] observed that 
increases in impervious areas through urbanization may result in the following hydrological impacts 
(i) reduced interception by tree canopies; (ii) reduced infiltration; (iii) increased surface runoff; (iv) 
increased flow velocities in urban areas due to decreased surface roughness and (v) increased peak 
flow discharges. Similarly, [6] noted that conversion of natural catchments to peri-urban or urban areas 
affect many processes of the hydrological cycle, such as interception, infiltration, evaporation and 
streamflow by runoff processes. However, the magnitude of impacts of urbanization on hydrological 
processes is commonly not well known especially in large parts of Africa. Furthermore, conclusive 
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studies on the implications of urbanization on closure of the water balance and availability of water 
resources are limited [5,7–9]. Yet knowledge on the effects of urbanization on the hydrology of 
catchments is critical for water resources management in most water-scarce areas, such as those  
in Africa. 

Studies that have assessed impacts of urbanization have adopted different approaches.  
For instance, [10] studied the effects of suburban developments on runoff generation using 
hydrograph analysis techniques. They showed that with increased suburban development there was 
an accelerated recession phase and increased peak flows. Similarly, [11] analyzed hydrograph 
characteristics at an annual scale for a 38-year runoff record to determine the effects of urbanization 
on streamflow. The study showed that the annual runoff coefficient of the urban stream (Peachtree 
Creek) was not significantly greater than that of the less-urbanized watersheds. However, the storm 
recession period of the urban stream was one to two days less than that of the other streams. [12] 
applied a water budget and meteorological approach to assess the effects of urbanization on 
catchment evapotranspiration (ET). The study showed significant decreases in catchment ET that 
were linked to increases in urban and residential areas. In a different study, [13] assessed the impacts 
of urbanization of river flow frequencies by a controlled experimental modeling approach using the 
model MIKE-SHE and the 1D hydrodynamic river model MIKE-11. The study showed that the 
frequency of low flows decreased with increasing urban expansion and that the frequency of average 
and high-flow events increased with increasing urbanization. Recently, there have been attempts to 
incorporate remote sensing data in hydrological models to enhance understanding of the effects of 
urbanization on the hydrological cycle. [14] applied a coupled distributed Hydrologic Engineering 
Center’s Hydrologic Modeling System (HEC-HMS) for runoff simulations with the integrated 
Markov Chain and Cellular Automata model (CA-Markov model) for development of future land 
use scenario maps. Landsat and CBERS satellite data were used. The results showed that increases 
in annual runoff volume, daily peak flows and flood volume between the years 1988–2009 could be 
related to urbanization. These hydrological variables were projected to further increase with 
increasing urbanization. These studies have encouraged incorporation of land use change information 
in distributed hydrologic models. However, the assessment of urbanization on hydrological impacts of 
catchments remains complicated due the spatial heterogeneity of the land surface in urban areas  
(see [5,7]). In this regard, satellite remote sensing provides an opportunity to assess and track changes 
in land cover over selected space and time domains thereby serving as an important input in impact 
assessments and modeling studies. Despite the importance of remote sensing in providing land cover 
maps which are critical inputs to hydrological models, there are often inconsistencies that may arise 
from image misclassifications or registration errors [15]. It is therefore important to correct for such 
inconsistencies through assessment of land use and land cover (LULC) spatial and temporal  
patterns [15,16] and or through accuracy assessment of classified images [17]. 

This study relied on satellite remote sensing data to represent land cover and elevation 
characteristics as inputs for the topographically driven TOPMODEL, which served to simulate the 
relationship between rainfall and runoff. TOPMODEL is a semi-distributed, mass conservative 
model which relies on a simple representation of basin characteristics and hydrologic processes [18] 
as compared to fully distributed and data demanding models like MIKE SHE [19]. The  
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semi-distributed form of TOPMODEL makes full use of elevation data which is freely available 
through the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) or the 
Shuttle Radar Topography Mission (SRTM) Digital Elevation Models (DEMs). TOPMODEL 
requires a small number of topographic and land surface based parameters and makes optimized 
parameter values physically meaningful [20]. Furthermore, in its setup, the model can adapt to a 
specific catchment and specific modeling purposes [21]. However, TOPMODEL mostly has 
applications in natural catchments [22–26] with only few applications in urban catchments [6,27]. 
Latter applications have characterized urbanized land cover by introducing impervious surfaces with 
very low percolation and surface infiltration rates [6,9,23,28] which resulted in increased and more 
rapid runoff responses. Despite these efforts, the use of TOPMODEL approach in an urban setting as 
shown in [6] indicated that the ISBA-TOPMODEL simulations underestimated total streamflow 
during dry periods whereas it overestimates streamflow during rain events and wet weather 
conditions. In the study by [29], modifications of TOPMODEL (TOPURBAN v.1 and v.2) were 
tested for urbanized watersheds by altering the topographic index and the mechanism to generate 
surface runoff but detailed descriptions on the processing of data including remote sensing data were 
missing. In fact, several studies [9–11,13,14] that have characterized urbanized land cover types for 
hydrological assessments have failed to adequately capture relevant spatial information of historical land 
surfaces in urban catchments. In that regard, this study determined historical changes in land cover 
and incorporated topographical attributes through ASTER DEM hydro-processing approaches as a first 
step towards assessing impacts of urbanization on hydrology. 

Within the African context, the assessment of the impacts of urbanization on streamflow is 
important for water development and management. Urbanization in Africa is common due to urban 
migration resulting in increases in paved and built-up areas in the urban setting. According to [30], 
Africa is one of the hotspots of serious urban growth and will continue to be so for the next four 
decades. It is projected that the population of African cities will increase by 0.9 billion by 2050. In 
Zimbabwe, the population of Harare has grown from 1.8 million in 2002 to 2.1 million in 2012 [31]. 
As a consequence, the demand for land for housing increased and peri-urban and rural areas have 
been converted to urban areas. In addition to exterior sprawling, densification is a strategy also being 
applied to grow the city of Harare. Densification promotes the growth of the city through the 
construction of buildings on lands previously left as open spaces thus increasing the extent of paved 
and build-up areas. Densification and sprawling have had the concomitant effect of intensifying 
urbanization. In Harare City, Marimba and Mukuvisi catchments are two catchments that are 
experiencing rapid urbanization as characterized by rapid growth and densification. Both catchments 
constitute the greater part of the built-up environment of the city. These catchments are the most 
urbanized in Harare City and therefore were selected for this study. The urban areas are characterized 
by middle-to-low income housing, office complexes and industrial areas. Hydrology and water 
related studies in and around the Marimba and Mukuvisi catchments have mainly focused on water 
quality and pollution, evapotranspiration and urban drainage [32–34]. Only few studies have focused 
on hydrology and quantification of water resources [35,36], but within the broader context of the 
Upper Manyame catchment. Detailed studies on hydrological impacts of urbanization of the 
catchments are unknown to the authors. Objectives of this study are to: (1) assess trends in rainfall and 
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streamflow; (2) assess changes in land cover in the Marimba and Mukuvisi catchments; and (3) assess 
hydrological impacts of urbanization and land conversion by rainfall-runoff model simulations. 

In Section 2 descriptions of the study area and available data are given including satellite data. 
Methods used in this study are described in Section 3. Findings of the study are presented and 
discussed in Section 4. Section 5 gives the conclusions and an outline of the recommendations.  

2. Study Area and Data 

2.1. Description of Study Area 

For this study the Marimba and Mukuvisi River catchments in Harare City are selected which are 
tributary catchments of the Upper Manyame basin in Zimbabwe (Figure 1). Mukuvisi catchment has 
an area of 223.1 km2 and a longest flow path of 44.7 km whereas Marimba catchment has an area of  
220.5 km2 and a longest flow path of 38.6 km. Both catchments have similar elevation ranges 
between 1350 m and 1550 m above mean sea level. The soil is primarily sandy clay loam. The mean 
annual rainfall for the period 2000–2010 is 810 mm/yr whereas potential evapotranspiration is 
around 1600 mm/yr. These two catchments were selected for this study since both are characterized 
by a rapid increase of built-up area and urbanization. The dominant residential housing in both 
catchments is high to medium density houses with limited space for gardens. The population density 
in the catchments is around 2.540 people/km2 according to [31]. However, there are low-density 
areas in the northern and eastern parts of the catchments that have spacious gardens. Trees are also 
kept within the residential stands. 

2.2. Hydro-Meteorological Data  

For this study, daily streamflow data for the years 1970 to 2008 for the gauging stations of Marimba 
and Mukuvisi catchments (C22 and C24, respectively) were made available by the Zimbabwe 
National Water Authority. Time series of daily meteorological data including rainfall data were 
acquired from the Meteorological Office of Zimbabwe. Potential Evapotranspiration at daily time 
step is estimated from the meteorological data using the FAO-Penman Monteith method as outlined 
in [37].  

The relation between rainfall and streamflow was assessed as part of data screening. For rainfall 
time series data from Airport, Belvedere and Kutsaga rain stations was used whereas for streamflow 
time series data from gauging stations C22 and C24, for Mukuvisi and Marimba catchments, 
respectively, was used (see Figure 1). Correlation between time series suggests dependency of 
streamflow on rainfall in both catchments (Table 1).  
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Figure 1. Mukuvisi and Marimba catchments in Zimbabwe showing elevation and 
locations of meteorological stations and streamflow gauging stations. 

 

Table 1. The significant relationship (p < 0.05) between rainfall and streamflow in the 
study area. All p values were equal to 0.000. 

Rain Station Streamflow Gauging Station Correlation R 
Airport C22 0.675 
Airport C24 0.649 

Belvedere C22 0.651 
Belvedere C24 0.656 
Kutsaga C22 0.667 
Kutsaga C24 0.642 

2.3. Satellite Data 

For estimation of the topographic index an ASTER DEM (30 m resolution) covering the study 
area was retrieved from the Global ASTER GDEM. For land cover change assessments we used land 
cover images from Landsat satellites, which were processed in ILWIS open source software. Landsat 
TM images analyzed in the study (path 170 and row 72) were downloaded from the United States 
Geological Survey (USGS) Global Visualization Viewer (GLOVIS) for the years 1986, 1994 and 
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2008, all in the dry month of August. Google Earth imagery of the study area was used to assess the 
imperviousness of the two catchments.  

3. Methodology  

3.1. Land Cover by Remote Sensing 

Table 2 shows the dates of image acquisition, spatial resolution as well as the bands used for land 
cover change analysis. The false color composites (5, 4, 3) were used in the classification process 
because of their ability to enhance image interpretation that ultimately facilitates differentiation of 
land cover types, such as: grass, woodland, cropped area, aquatic weeds and bare surfaces which are 
critical for assessing changes in land cover as a result of urbanization. 

Table 2. Description of imagery used for land cover classification. 

Sensor Date of Acquisition Spatial Resolution Bands Used Cloud Cover 
Landsat 5 TM 31 August 1986 30 meters 5, 4, 3 0 
Landsat 5 TM 21 August 1994 30 meters 5, 4, 3 0 
Landsat 5 TM 10 August 2008 30 meters 5, 4, 3 10 * 
* Although the overall scene had 10% cloud cover, the study site had less than 5% cloud cover. 

Prior to image classification, all the images were georeferenced to the Universal Transverse 
Mercator zone 36 south projection based on the WGS84 datum. A minimum of 15 ground control 
points were used during image registration. The nearest neighbour resampling method was used for 
image registration and a root mean square error less than 0.2 pixels (~6 m) was obtained. To ensure 
comparability of the images across the years, digital numbers were converted to radiance and from 
this to a dimensionless top-of-atmosphere ( TOA) reflectance: 

TOA = ·L ·d2/ESUN ·Cos s (1)

where: 

L  = the spectral radiance at the sensor 
d = the Earth-sun distance in astronomical units 
ESUN  = the mean solar exo-atmospheric irradiance for each band and 
Cos s = the solar zenith angle in degrees (Irish 1998). 

The sensor calibration information, such as solar zenith angle and earth-sun distance, was 
extracted from the header file of the imagery [38]. Once converted to TOA reflectance, bands 5, 4 
and 3 representing the Short-wave Infrared, Near Infra-Red and the Red bands of Landsat, 
respectively, were combined in the ILWIS Geographic Information System (GIS) to create a color 
composite, which enhanced visualization before image classification. The images were then classified 
using the maximum likelihood classification algorithm in a GIS environment based on the six land 
cover classes in the study area (Table 3). The maximum likelihood classification algorithm is based 
on the probability that a pixel belongs to a particular class and thus a pixel is assigned to a predefined 
set of classes to which it has the highest probability of belonging to [17]. The maximum likelihood 
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was used for the study because of its robustness [39]. Image classification was important in the 
determination of land cover, an important determinant of streamflow generation in hydrological 
catchments. Table 3 provides a description of the classes used in this study.  

Table 3. Description of the land cover classes used in the study. 

Class Description 
Aquatic weeds Area under aquatic weeds 
Cropped Field Area under crops 

Grassland Area predominantly covered with grass for a significant part of the year 

Urban 
Area covered with bare surfaces that have been cleared for urban developments, 
impervious surfaces, such as roads and buildings 

Water Area occupied by water, such as rivers and wetlands 

Woodland 
Area covered with sparse to dense woody species, such as shrubs, bushes and trees. 
Miombo species dominate this cover. 

Results of classification were assessed for their accuracy using Kappa statistic. The Kappa statistic 
was based on 1720 ground control points for Marimba catchment and 985 points for Mukuvisi catchment. 
The ground control points were taken from high resolution Google Earth imagery and aerial 
photographs for the dates which coincided with the Landsat imagery acquisition dates. The selection 
of these points was based on the relative proportion of each land cover type derived from visual 
interpretation of the image. Table 4 shows the average number of these ground control points used 
for accuracy assessment in the study. 

Table 4. Average number of points used for validating the classified landcover images 
for Marimba and Mukuvisi Catchment. 

Land Cover Marimba Mukuvisi 
Aquatic weed 42 * 

Urban 356 322 
Cropped Field 128 104 

Grassland 678 292 
Water 375 89 

Woodland 141 178 
* No aquatic weeds were observed in Mukuvisi catchment. Aquatic weeds were mainly observed in  
Lake Chivero. 

After image classification, overlay analysis was performed on the 1986, 1994 and 2008 images to 
assess land conversion and urbanization in the study area. The result of the overlay analysis is a confusion 
matrix, which shows land cover and land cover conversions for both catchments for respective years. 

3.2. Trend Analysis and Hydro-Meteorological Time Series 

Trend analysis for rainfall and streamflow time series is critical to assess if changes in streamflow 
could be related to changes in rainfall as possibly caused by climate change. In this study,  
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the Mann-Kendall test was used to test whether, statistically, significant trends at monthly and annual 
base (1954–2006) could be identified. We tested for significant levels at p < 0.05. The Mann-Kendal 
(MK) test, also known as the as the Kendall’s tau statistic [40,41], is a rank-based non-parametric 
statistical test that is commonly applied for trend detection [40,42,43]. The test compares the relative 
magnitudes of sample data rather than the data values themselves [44]. The tau statistic, , reads: 

 (2)

where: 

 (3)

 (4)

The quantity S in Equation (2) shows the number of concordant pairs minus the number of 
discordant pairs. A high positive value of S is an indicator of an increasing trend, whereas a low 
negative value indicates a decreasing trend. 

3.3. Hydrological Modeling 

For this study a TOPMODEL code was developed at Faculty of Geo-information Science and 
Earth Observation (ITC), University of Twente, for application in a semi-distributed fashion. The 
code was developed in the IDL programming language and is a conversion of FORTRAN (viz. 
FORmula TRANslator) version of TOPMODEL in [45]. This version was selected to allow for 
infiltration excess overland flow simulation by urbanization and land conversion. This was 
implemented by means of the Green and Ampt equation [46]. Table 5 shows the most relevant model 
parameters and the Green and Ampt parameters [47–49], which were obtained from literature and 
linked to soil texture and soil compactness in the study area. The imperviousness of the two 
catchments was obtained through visualization of freely available Google Earth imagery of the study 
area and the texture was assessed using soil maps of the study area. 

The Green and Ampt approach relies on physically based equations and serves to estimate 
infiltration rates from a maximum to minimum rate [46]. This study adopts the power function 
formulation with power n = 1 and 2 developed by [50]. In this approach only the linear and exponential 
forms are considered and serves to allow a faster decay of infiltration and more rapid generation of 
runoff [50]. 

TOPMODEL is a mass conservative rainfall-runoff model based on the variable contributing area 
concept. Predominant factors affecting the formation of runoff are (1) the topographic index; (2) the 
overland flow and channel network and (3) negative exponential function which links transmissivity 
of the soil with the vertical distance from the land surface by means of a scaling parameter m [51].  
Full details of the governing equations and the rationale behind the model structure are available  
in [44,51–53]. 
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Table 5. TOPMODEL parameters. 

Parameter Description Equation 

m (m) 

Scaling parameter of the exponential transmissivity function 
which is a function of local storage deficit or depth to the water 
table [51].  
Value range 0.01–1.0 m. 

 

To (m2/h) 
Transmissivity of the soil profile at full saturation. 
Value range 0.01–2.25 m2/h 

 

td (h) 
Time delay constant for routing unsaturated flow. 
Value range 0.01–24 h [52]. 

 

CHV (m/h) 
Channel and overland flow routing velocity. 
Ranges vary with specific catchment 

 

RV (m/h) Channel flow inside catchment (vary with specific catchment)  

SRmax (m) 
The root zone available water storage capacity. 
Value range 0–0.3 m 

 

Qb (m/h) 
Initial stream discharge to represent baseflow. Used in recession 
curve analysis (function of rainfall-runoff relationship in the 
specific area). 

 

SR0 (m) 
Initial value of root zone deficit, also called SRinit. 
Value range 0.001–0.1 m 

 

INFEX (–) 
An infiltration flag set to 1 to include infiltration excess 
calculations, otherwise 0. 

[46,50,53] 

Ko (m/hr) Surface value of the saturated hydraulic conductivity (Ks) [46,50,53] 

f (m) 
Effective suction head for the calculation of infiltration excess 
flow 

[46,47,53] 

 (–) Water content change across the wetting front (Beven, 1984). [46,50,53] 

3.3.1. The Topographic Index  

TOPMODEL is mathematically and parametrically simple and relies on the processing of digital 
terrain data to calculate the topographic index distribution function of the catchment. For estimation 
of the topographic index an ASTER DEM was processed in the ILWIS GIS software. Local 
depressions were removed and local slopes and drainage patterns were defined. The topographic 
index (TPI) combines the (local) topographic slope and the specific runoff contributing area  as 
critical input to model simulations. TPI serves to predict local variations in water table [54,55] as the 
main driver to generate runoff. The topographic index (TPI) reads: 

 (5)
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Ln = the natural logarithm 
 = specific runoff contributing area 

tan  = the average outflow gradient from the DEM grid element.  

3.3.2. Overland Flow and Channel Network Routing 

To simulate the flow travel time, TOPMODEL uses a simple scheme called a delay approach [56]. 
Fractional area and its distance from the outlet are required as well as channel velocity, which is a 
constant across the catchment. The model computes the time it takes for a water particle to travel 
from each fractional area to contribute to the catchment outlet. Then for each area, contributions are 
defined and accumulated for the calculation time steps [44]. We note that the rainwater networks for 
the urban part of the catchments are integrated into the natural streams and rivers and therefore the 
mechanism of surface runoff generation and flow routing is maintained. Selecting a DEM grid 
element as catchment outlet, a distance map was produced showing the shortest distance to the 
catchment outlet for any DEM element. The distance map was then sliced into thirteen distance 
classes of equal size for surface flow routing [57].  

The Transmissivity Profile 

The scaling parameter m, is also known as a decay parameter that controls the decrease of 
transmissivity, To, with depth from the land surface when full saturation is considered.  
Following [58], recession curve analysis of streamflow data was performed to estimate the scaling 
parameter. A larger value of m increases infiltration whereas a smaller value decreases infiltration 
and thus m directly affects simulation results. 

Land Cover Parameterization 

To evaluate impacts of urbanization and land cover change on hydrological processes, scaling 
parameter (m), soil transmissivity (To), root zone available water capacity (SRmax) and saturated 
hydraulic conductivity (Ks) were used. These parameters were selected because they have been found 
to be the most sensitive TOPMODEL parameters in literature [18,49,58,59]. Also parameter values 
are affected by soil characteristics and vegetation cover and therefore are of relevance in land cover 
change impacts assessments.  

SRmax was selected since it represents maximum root zone storage, which directly affects actual 
evapotranspiration from the root zone (Table 5). Moreover, net precipitation in excess to SRmax causes 
runoff generation by overland flow. To simulate effects of urbanization in TOPMODEL, using the 
Green and Ampt infiltration excess approach four additional parameters (Table 4) are required. In 
residential areas, with compacted soils, the concept adopted from [49] provides a number of 
infiltration decay methods to increase flexibility in matching the increased incidence of infiltration 
excess runoff. The Green and Ampt parameters remain constant (i.e., frozen) during a model simulation 
run. The spatial variability and distribution of hydraulic conductivity (Ks) is represented in the model 
setup by specifying Ks values for different land covers.  
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For comparison of streamflow for the 10-year simulation periods, which enclose the 1986, 2004 
and 2008 images, m, SRmax and Ks were changed for both catchments to mimic the variation and 
change in land cover by urbanization. The approach for the land cover change impact assessment in 
this study is that for different years of image analysis different land cover types apply and thus 
distribution of hydraulic conductivity change as well. In a semi-distributed fashion, values for the 
parameters are weighted based on area size by each land use and subsequently averaged for the whole 
catchment. The initial estimates of the parameters were extracted from literature addressing 
parameterization of land cover in TOPMODEL [25,26,49,51,59].  

In order to implement the subsurface storage, each land cover type was allowed to have its specific 
mean catchment deficit (SLUi). The average specific mean catchment deficit (Si) was obtained by area 
weighted averaging. The recharge rate from each land cover type was areally-weighted and summed 
before updating Si at each time step. The calibrated and validated model parameter set and the 
meteorological forcing date for the period enclosing 2008 was applied to 10-year periods enclosing 
the 1986 and 1994 land cover images. In this approach, hydrological impacts by urbanization and 
land conversion were made explicit since only effects by land cover changes (i.e., urbanization)  
are considered. 

Interception and Evaporation 

For the estimation of rainfall interception in this study, an interception technique adopted from 
the agro-hydrological model Soil-Water-Atmosphere-Plant (SWAP) [60,61] was adopted. 
Interception is assumed not to contribute to infiltration or runoff production and therefore an 
interception depth is subtracted from the rainfall before infiltration and runoff production are 
estimated. Interception loss was therefore estimated from Leaf Area Index (LAI) values, which were 
calculated from the Soil Adjusted Vegetation Index (SAVI) [62,63] using the 1986, 1994 and 2008 
Landsat images. SAVI reads: 

 (6)

where: 

NIR = near-infrared reflectance;  
R = red reflectance;  
L = soil adjustment factor, most often defined as 0.5 for intermediate vegetation. 

LAI is defined as the ratio of the total area of all leaves on a plant to the ground area covered by 
the plant. The LAI was computed from the SAVI map as follows:  

 (7)

where: 
C1, C2 = empirical constants. 
Literature values for SAVI constants and their ranges are summarized (after [64]). 
In order to determine changes in evapotranspiration due to land cover changes, evapotranspiration 

from each specific vegetation type or crop evapotranspiration (ETc) was calculated using the crop 
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coefficient approach (Kc) according to Allen et al. [37]. In the crop coefficient approach, crop 
evapotranspiration is calculated by multiplying the reference evapotranspiration (ETo) by the Kc 
values as follows: 

 (8)

where: 

ETc = crop evapotranspiration (mm·d 1);  
ETo  = reference crop evapotranspiration (mm·d 1);  
Kc = crop coefficient.  
For assessing impacts of urbanization on runoff, the hydrographs obtained in the periods  

1980–1990, 1990–2000 and 2000–2010 were compared visually. Also percentage changes in 
accumulated and yearly maximum streamflow amongst the 3 periods were compared. In addition, 
flow duration curves were used to evaluate changes in the flow regimes for both catchments for the 
above specified periods.  

3.3.3. Model Calibration and Validation 

Before the model was applied for land cover change impact assessment, it was initialized, 
calibrated and validated. Initialization or warming of the model was for the period October  
2000–September 2001, which makes up a hydrological year. Selection of periods for calibration and 
validation were based on the split sample test approach. For calibration, the period October  
2001–September 2007 was selected whereas for validation the period 2007–2010 was selected. 
Results of calibration and validation were evaluated graphically by comparing observed and 
simulated streamflow hydrographs and numerically by the Nash-Sutcliffe Efficiency (NS) and 
Relative Volume Error (RVE) objective functions. For NS, values between 0.6 and 0.8 commonly 
indicate that the model performs fair (0.6) to good (0.8). Values between 0.8 and 0.9 indicate that the 
model performs very well and values between 0.9 and 1.0 indicate that the model performs extremely 
well [65]. RVE can vary between +  and  with optimum value of 0. A RVE value of 0 indicates that 
there is no difference between simulated and observed streamflow volume. A RVE between +5% to 

5% indicates that a model performs well whereas a RVE between +5% and +10% and 5% and 
10% indicates a model with fair performance [65,66]. We note that interpreting model performance 

indices is not trivial and refer to recent studies by [67–70].  
Calibration in this study was done through an iterative process in which the model parameters 

were manually adjusted to optimize model performance. Initial parameter values were set by 
considering values from literature [21,53,58,71–75]. The first step in calibration aimed at simulation 
of baseflow in the dry season after which calibration aimed at higher streamflows and the 
hydrographs in general. Secondly, parameters were calibrated so that simulated and observed 
recession periods matched. Lastly, parameters m, SRmax, and To were tuned until the rising limb of the 
simulated hydrograph and timing of the peak flow matched to counter parts of the observed 
hydrograph. By optimizing the SRmax parameter, the timing of the peak flow could be improved since 
a higher value of SRmax results in a model response that cause better fit of the rising limb. The model 
was validated for the period October 2007–2010.  

occ ETKET =
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4. Results and Discussion 

4.1. Trend Analysis 

4.1.1. Rainfall 

Results of the Mann-Kendall test performed on rainfall data from the three meteorological stations 
showed that in some months there are statistically significant changes in long-term monthly rainfall 
(see Table 6). Specifically, statistics for the Airport rainfall station indicated a downward trend for 
all the months except January, March, June and August. January and March marks the midway of 
the rainfall season in Zimbabwe while June and August marks the middle of the dry season. Analyses 
further indicate a statistically significant downward trend for the months of April, May and 
September. April and May mark the end of the rainfall season in Zimbabwe while September marks 
the end of the dry season. For Kutsaga rainfall station, there was an overall decreasing trend in rainfall 
for seven months of the year with May being the only month that showed a statistically significant 
decreasing trend. 

Belvedere station showed an increasing trend for eight months of the year and experienced a 
decreasing trend for four months of the year but the trends were not significant. For greater part of 
the rainfall season, which covers the period November till February, no significant trends were 
detected in the three stations. There is a general decreasing trend in both annual and monthly rainfall 
for most of the months at Kutsaga station. However, these trends are statistically not significant 
except for the month of May. Furthermore, findings show that although there are negative trends in 
annual rainfall, trends are not statistically significant. Since most of the decreases in rainfall have been 
observed in the dry season, these changes are likely to have minimal effect on streamflow as they 
contribute little to runoff production. 

4.1.2. Streamflow 

Table 7 illustrates annual and monthly streamflow trends based on data from Marimba and 
Mukuvisi gauging stations. Trend analysis results of annual and monthly streamflow between 1970 
and 2006 showed that there was a significant increase in streamflow generated in the catchment as 
observed at Marimba and Mukuvisi gauging stations. 
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Table 7. The Kendall test statistic (tau) for trend analysis for annual and monthly 
streamflow measured from 1970 to 2008 at Marimba and Mukuvisi gauging stations. 
Statistically significant trends (p < 0.05) are shown in bold. 

Month 
Mukuvisi Gauging Station Marimba Gauging Station 

tau z-Score p-Value Tau Z-Score p-Value 
January 0.276 2.393 (0.017) 0.203 1.785 (0.074) 
February 0.165 1.426 (0.154) 0.124 1.081 (0.280) 
March 0.255 2.21 (0.027) 0.195 1.71 (0.087) 
April 0.264 2.289 (0.022) 0.283 2.49 (0.013) 
May 0.354 3.074 (0.002) 0.42 3.696 (0.000) 
June 0.554 4.813 (0.000) 0.539 4.752 (0.000) 
July 0.435 3.78 (0.000) 0.607 5.356 (0.000) 
August 0.572 4.97 (0.000) 0.63 5.558 (0.000) 
September 0.614 5.337 (0.000) 0.631 5.558 (0.000) 
October 0.628 5.454 (0.000) 0.578 5.093 (0.000) 
November 0.444 3.858 (0.000) 0.35 3.08 (0.002) 
December 0.336 2.917 (0.004) 0.337 2.97 (0.003) 
Annual 0.357 3.099 (0.001) 0.295 2.59 (0.009) 

Streamflow of Mukuvisi catchment showed a significant positive trend (p < 0.05) for all months 
of the year except for February in which streamflow has increased (Table 6). For Marimba catchment, 
streamflow does not show any significant trend between January and March indicating that the 
streamflow did not notably change for these months. Analysis of streamflow measured at Marimba and 
Mukuvisi gauging stations indicate that mean monthly streamflow increased from 7.55 m3 and 4.51 
m3 in 1970 to 35.01 m3 and 25.18 m3 in 2006, respectively which suggest large changes in mean 
monthly streamflow during a period covering nearly four decades.  

4.2. Topographic Index 

Figure 2 (left panels) shows the spatial variation of elevation for the Marimba and Mukuvisi 
catchments. Elevation in both catchments range between 1300 m and 1600 m and, as such, indicates 
little variation. The dominant flow direction in both catchments is south west (middle panels). 
Regions of higher topographic index (>20) for both catchments are found along rivers and along 
gentle slopes (right panels). The upstream areas that represent low topographic index are called 
runoff contributing areas. Comparatively the low lying areas which showed a high topographic index 
represent zones of saturation [21,76]. In this work, the topography of the two catchments, which is 
critical for hydrological simulation, is represented by use of a satellite derived ASTER DEM. 

4.3. Land Cover Changes 

Land cover for Marimba and Mukuvisi catchments was analyzed for the years 1986, 1994 and 
2008 for which satellite images were available. Results of the accuracy assessment based on Kappa 
statistics show that the accuracy levels were above 0.92 for all years (Table 8). A Kappa statistic of 
more than 92% indicate that there is almost an agreement between land cover indicated by the classified 



99 
 

 

images and ground control points relative to the agreement that can be expected by chance [77,78]. As 
such, the classified images well represent the land cover in the catchments and the results are suitable for 
further use. 

Figure 2. The spatial variation of topographic derivatives, such as elevation (left 
pannels), local flow direction (middle panels) and yopographic index (right panels). 

 

Table 8. Kappa statistics for the classified images of the Marimba and Mukuvisi 
catchments for 1986, 1994 and 2008. 

Catchment Year Kappa Statistic 

Marimba 
1986 0.981 
1994 0.983 
2008 0.922 

Mukuvisi 
1986 0.995 
1994 0.978 
2008 0.93 

4.3.1. Marimba Catchment 

Marked changes in land cover were observed in Marimba catchment between 1986 and 2008 
(Table 9 and Figure 3). The urban area increased from 34.62 km2 in 1986 to 40.15 km2 in 1994 and 
subsequently increased to 71.95 km2 in 2008. The increase in urban areas was larger for the period 
1994–2008 compared to the period 1986–1994. Results also showed that the area covered by 
woodlands in Marimba catchment decreased from 99.94 km2 in 1986 to 57.26 km2 in 2008. The 
decrease in woodland area was larger between 1986 and 1994 (25.98 km2) compared to the decrease 
in area between 1994 and 2008 (16.70 km2). Grasslands showed an increase from 1986 to 1994 and 
a decrease in 1994 and 2008 thus changes were not consistent over the 22-year period. The changes 
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in grasslands can be attributed to conversion of grassland into other land cover types, such as 
woodland (e.g., through reforestation) as well as clearance for urban developments (see discussion 
on land cover conversions in Marimba catchment). The aquatic weeds and the water class remained 
relatively unchanged over the study period. 

Table 9. Land conversions in square kilometers for Marimba catchment for the period  
1986–2008. 

Land Cover 1986 1994 2008 
Aquatic weeds 0.11 0.09 0.11 

Urban 34.62 40.15 71.95 
Cropped Field 9.24 3.25 2.70 

Grassland 76.41 102.95 88.38 
Water 0.25 0.18 0.17 

Woodland 99.94 73.96 57.26 
Total 220.57 220.57 220.57 

The land cover conversions in Marimba catchment for the years 1986, 1994 and 2008 were determined 
using overlay analysis in a GIS. Results from land cover analysis show that significant proportions 
of grasslands (13.75 km2) and woodlands (6.82 km2) were converted to urban area between 1986 and 
1994. Although there were some conversions from grasslands to woodland and vice versa, there was 
a pronounced decrease of 31.22 km2 in woodlands over the same period. The second period  
(1994–2008) was characterized by considerable conversion of grasslands (31.58 km2) and woodlands 
(18.56 km2) to urban area. Despite some conversions from urban to grasslands (13.74 km2) and to 
woodlands (4.73 km2) there is a net gain of the urban area from the two classes. 

Figure 3. Results of Land cover classification in Marimba (top panels) and Mukuvisi 
(bottom panels) catchments for 1986, 1994 and 2008. 
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4.3.2. Mukuvisi Catchment 

For Mukuvisi catchment findings indicated that the urban area increased from 21.43 km2 to 56.31 
km2 between 1986 and 1994 (Table 10). The same land cover class increased substantially to 135.04 
km2 in 2008. Cropped fields and grasslands varied during the same period. In contrast, woodlands 
decreased considerably from 100.78 km2 in 1986 to 65.19 km2 in 1994 and subsequently decreased 
to 52.12 km2 in 2008. Thus, woodlands decreased by nearly 50% whereas the urban area increased 
by more than 500% over the twenty-two year period. 

Table 10. Land conversions in the Mukuvisi catchment between 1986 and 2008 (Area is 
in square kilometers). 

Land Cover 1986 1994 2008 
Urban 21.43 56.31 135.04 

Cropped Field 3.45 1.24 5.67 
Grassland 97.15 100.21 30.12 

Water 0.38 0.24 0.24 
Woodland 100.78 65.19 52.12 

Total 223.20 223.20 223.20 

An analysis of land cover in the Mukuvisi catchment showed that between 1986 and 1994, 27.63 
km2 of grassland was converted to urban area. About 14.45 km2 of woodland was also converted to 
urban area. Table 11 provides a summary of land cover conversions that occurred in the catchment.  

Table 11. Land conversions in Mukuvisi catchment between 1986 and 1994 (Area is in 
square kilometers).  

1986 1994 
Land Cover Type Urban Cropped Field Grassland Water Woodland 

Urban 13.82 0.11 6.16 0.00 1.33 
Cropped Field 0.37 0.80 0.51 0.00 1.77 

Grassland 27.63 0.18 54.03 0.02 15.29 
Water 0.04 0.00 0.08 0.16 0.11 

Woodland 14.45 0.15 39.42 0.07 46.69 

The period 1994 to 2008 experienced a conversion of 64.87 km2 of grassland to urban area 
whereas 23.11 km2 of woodland was converted to the urban class (Table 12). 

Table 12. Land conversions in Mukuvisi catchment between 1994 and 2008 (Area is in 
square kilometers). 

1994 2008 
Land Cover Type Urban Cropped Field Grassland Water Woodland 

Urban 46.11 1.04 4.96 0.02 4.18 
Cropped Field 0.88 0.15 0.08 0.00 0.14 

Grassland 64.87 0.99 20.50 0.05 13.79 
Water 0.07 0.01 0.01 0.12 0.03 

Woodland 23.11 3.48 4.57 0.05 33.97 
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Findings for grassland indicate that 13.79 km2 was converted to woodland during the same period 
whereas about 4.57 km2 of woodland was converted to grassland. When combined this indicates a 
decrease of woodland.  

4.4. Model Calibration and Validation 

Figures 4 and 5 show results of model calibration, whereas Table 13 shows the optimized model 
parameter values. Generally, the model was able to successfully reproduce the peak flows and the 
baseflow throughout the years 2000–2010. However, for Mukuvisi catchment there are overestimations 
of simulated streamflow throughout the simulation period. For Marimba and Mukuvisi catchments 
Nash-Sutcliffe (NS) efficiencies of 0.79 and 0.70 were obtained, respectively, suggesting a fair model 
performance. A Relative Volume Error (RVE) of 6% and 5.2% was obtained for Marimba catchment 
and Mukuvisi catchment, respectively and indicate that the total streamflow is somewhat 
overestimated. However, RVE values were in the range of 10% to 10% [66] which, by itself, 
suggests a fair model performance in terms of representing the catchment water balance. [22]  
and [79] assert that the proper characterization of topography plays an important role in runoff 
generation and thus the obtained NS and RVE objective function values indicate that the  
topographic-index distribution function for both catchments are adequate. 

For Marimba and Mukuvisi catchments, for the validation period (2009–2010) the model 
reproduced the observed streamflow hydrographs quite well but mostly overestimated peak flow 
discharges. The NS efficiency for the validation period for Marimba and Mukuvisi catchments were 
0.74 and 0.65, respectively. The RVE for Marimba and Mukuvisi catchments were 7.4% and 10%, 
respectively, which also indicates that the model overestimated the streamflow volume. 

Figure 4. Model calibration results Marimba catchment (October 2001–September 2007). 
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Figure 5. Model calibration results Mukuvisi catchment (October 2001–September 2007). 

 

Table 13. Optimized parameter values used in the model for Marimba  
and Mukuvisi catchments. 

Parameter 
m 

(m) 
To 

(m2/h) 
Td 
(h) 

CHV 
(m/h) 

RV 
(m/h) 

SRMAX 
(m) 

Q0 
(m/day) 

SR0 
(m) 

Marimba 0.045 5 20 3600 1700 0.045 0.000286 0.001 
Mukuvisi 0.035 5 22 3500 1500 0.035 0.000329 0.002 

Figure 6. Observed and simulated streamflow for Marimba catchment (2000–2010). 
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4.5. Simulation Results under Land Conversions 

For assessment of hydrologic impacts, the optimized parameter sets were applied to the historic 
time periods 1980–1990 and 1990–2000. For these periods, classified land covers served as 
TOPMODEL input to make hydrologic impacts and effects of land cover changes explicit. In the 
procedure the optimized parameters for each land cover for the period 2000–2010 are selected and 
applied to the land cover of the historic time period. In this procedure, changes in land cover areas are 
represented by a re-distribution of optimized model parameters across the catchments. The premise 
for model impact assessments is that any difference in the streamflow hydrograph characteristics is 
a direct result of the changed spatial distribution of model parameters by the different degrees of 
urbanization. It is noted that rainfall and ET for the 2000–2010 period is used for the 1990–2000 and 
1980–1990 periods and therefore model forcing remained unchanged. In such procedure the 
simulated streamflow hydrographs for the period 2000–2010 also may serve as reference to simulation 
results of the historic period to assess hydrological impacts. Results of streamflow simulations are 
shown in Figures 6 and 7. It is shown that peak flows and baseflows in both catchments were  
well represented. 

Figure 7. Observed and simulated streamflow for Mukuvisi catchment (2000–2010). 

 

A comparison of simulated streamflow hydrograph for all three periods indicates that runoff 
behavior has changed in both Marimba and Mukuvisi catchments (Figures 8 and 9). Streamflow 
hydrographs for the simulation period showed that during the period 2000–2010 more runoff was 
generated than in the periods 1990–2000 and 1980–1990. The peak flows of the 2000–2010 period 
were higher than the peak flows of the other two periods. The baseflow of the period 1980–1990 was 
higher than the baseflow of the period 1990–2000, with the period 2000–2010 being the lowest. The 
average yearly streamflow for Marimba and Mukuvisi in Table 14 shows that streamflow increased 
between 1980–1990 and 1990–2000 in both catchments. For the period 1980–2010 there was a 
notable increase in streamflow by 46% and 45%, respectively for the Marimba and Mukuvisi 
catchments. Table 14 also shows an increase in the yearly highest streamflow for the same period, 
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which coincided with an increased loss of forest area. The increase in streamflow simulated by 
TOPMODEL for the three consecutive periods (see Table 14) suggests that the changes in vegetation 
and soil permeability through urbanization is the main cause for changes in the streamflow. Results 
of model simulations for the period 1980–2000 in Marimba and Mukuvisi catchments indicated 
relative increases in mean annual streamflow by 8.5% and 8.4% respectively. For the 20 year period 
(1990–2010) increases as large as 34.6% and 33.3% were experienced in Marimba and Mukuvisi 
catchments, respectively, and suggest a progressive and accelerated impact. For the entire 30-year 
period (1980–2010), increases of mean annual streamflow were as large as 45.9% and 44.5% for 
Marimba and Mukuvisi catchments, respectively. The highest streamflow values observed during 
the simulation period were used to assess the impacts of land conversions. Table 14 shows the same 
trend of increase as experienced in the mean annual streamflow from 1980 to 2010. Findings indicated 
that urbanization resulted in enlarged areas of reduced infiltration potential thus causing more 
frequent rapid-runoff responses but also increasing streamflow discharges. The baseflow of the 
period 2000–2010 in the two catchments is lower than for the period 1980–1990 presumably because 
of reduced infiltration. We note that reduced forest area caused a reduction in baseflow as forest soils 
often are characterized by relatively high infiltration whereas root zones are relatively deep and hold 
and store water. From a modeling point of view, findings suggest the ability of TOPMODEL to add 
to insights on the changes in hydrological system behavior due to urbanization and land conversion 
as observed by satellite remote sensing. 

Figure 8. Comparison of streamflow hydrographs in Marimba catchment for the  
three periods. 

  

  



106 
 

 

Figure 9. Comparison of streamflow hydrographs in Mukuvisi catchment for the  
three periods. 

 
Table 14. Comparison of simulated Mean Annual Streamflow (Qmean) and Yearly 
Highest Streamflow (Qhst) for respective periods. 

Period Catchment Qmean (m3/s) Qhst (m3/s) 

1980–1990 
Marimba 491.2 16.2 
Mukuvisi 529.8 21.9 

1990–2000 
Marimba 532.7 29.4 
Mukuvisi 574.1 27.2 

2000–2010 
Marimba 716.8 50.0 
Mukuvisi 771.0 34.0 

  % Change in Qmean % Change in Qhst 

1980–2000 
Marimba 8.5 81.6 
Mukuvisi 8.4 55.6 

1990–2010 
Marimba 34.6 70.1 
Mukuvisi 33.3 24.9 

  % Change in Qmean % Change in Qhst 

1980–2010 
Marimba 45.9 208.8 
Mukuvisi 44.5 55.6 

Figures 10 and 11 show the flow duration curves for Marimba and Mukuvisi catchments which 
were used to assess changes in the flow regimes. The flow duration curves show the relationship 
between the magnitude of streamflow discharges and % number flow discharges are exceeded or 
equaled. Inter-comparison of the curves and their shifts serves to assess hydrological impacts due to 
land conversions. Low flows (<1 m3/s) in the Marimba catchment were exceeded 20% of the times for 
the period 1980–1990, some 22% for the period 1990–2000 and 54% for the period 2000–2010. For 
Mukuvisi catchment, flow discharge of 1 m3/s was exceeded 58% of the times and decreased to 45% 
for the period 1990–2000 and to 60% for the period 2000–2010. Furthermore, streamflow discharge 
of 10 m3/s was equaled or exceeded <1% of the times in both the periods 1980–1990 and 1990–2000 
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as compared to 7% in the period 2000–2010 for Marimba catchment. For Mukuvisi catchment, 
stream flow discharge of 10 m3/s was exceeded 5% in the period 2000–2010. The slope of all the 
flow duration curves in the period 2000–2010 for higher streamflow is much steeper as compared to 
the other periods for both catchments. This is an indication of the effect of urbanization which causes 
higher streamflow responses during the rainy season [80]. For streamflow discharges higher than 30 m3/s 
there is no percentage exceedance for the 1980–1990 and 1990–2000 period and are alike 
conclusions found in [81] in a Tanzanian catchment where changes in flow duration curves were 
attributed to effects of land conversions.  

The flow duration curve for the period 2000–2010 indicates that hydrological impacts are more 
pronounced compared to earlier periods and particularly applies for higher streamflow discharges. 
These findings well match to results of land cover classification, which indicate accelerated 
urbanization for the last (2000–2010) time period.  

Figure 10. Flow duration curves in the Marimba catchment for the periods 1980–1990, 
1990–2000 and 2000–2010. 

 

Figure 11. Flow duration curves in the Mukuvisi catchment for the periods 1980–1990, 
1990–2000 and 2000–2010. 
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5. Conclusions and Recommendations 

Results of satellite image classification for land cover change assessment in Mukuvisi and 
Marimba catchments in the city of Harare have shown that the urban area increased by more than 
500% in the Mukuvisi catchment and by more than 200% in the Marimba catchment between 1986 
and 2008. Woodlands decreased by more than 40% over the same period in the two catchments with a 
larger decrease in Marimba than in Mukuvisi. Findings on land conversion showed increased 
conversion of grasslands and woodlands to urban area over the past decades. This accelerated 
urbanization suggests that several land cover types have been converted to impervious surfaces over 
the past few decades. 

Statistical analysis on rainfall and streamflow time series indicated a significant decreasing trend  
(p < 0.05) for rainfall and significant increasing trend (p < 0.05) for streamflow. The increasing trends 
in streamflow could be attributed to the increase in low permeability land surfaces in the two catchments. 
Results of streamflow modeling for Marimba and Mukuvisi catchments indicated that the mean 
annual streamflow increased by 46% and 45%, respectively from 1980 to 2010. These increases 
coincided with the decrease in forest area and an increase in urban area over the same period. As 
such, findings of this study indicate clear impacts by urbanization in the two catchments. The 
observed streamflow increases due to land conversions in this study are relatively high compared to 
other studies (e.g., [82]) which have shown that a 10% increase in imperviousness, results in an 
increase in the range of 9.8% to 10.2% in annual mean streamflow. A significant impact of 
urbanization on hydrological regimes is the increase of impervious surfaces, which cause increased 
streamflow volumes due to the reduction in soil infiltration capacity. As such, urbanized surfaces are 
likely to generate more runoff than areas, which are densely covered with vegetation especially 
woodlands. Also, the increase in paved and roofed surfaces reduces the area over which precipitation 
can infiltrate the soil and results in increased overland flow which, by itself, contributes to quick 
runoff and streamflow. It can be concluded that clearance of woodlands through urbanization has 
significantly altered the streamflow regimes in both catchments. These opposing signals in rainfall and 
streamflow trends signify that the increase in low permeable land surfaces as a result of urbanization 
probably is the main cause for the streamflow increases. 

This study further demonstrated that a widely accepted rainfall-runoff modeling approach can be 
extended beyond its basic purpose of predicting local variations in water table utilizing the 
topographic index. To simulate impacts of land use change in this study, land surface parameterization 
for the rainfall-runoff model was successfully carried out through quantifying the topographic 
indices, land cover and vegetation indices for urbanization impact assessment. Parameterization 
served to estimate interception loss, evapotranspiration loss and infiltration excess overland flow by 
means of the Green and Ampt approach. An approach was applied that used State of the Art GIS and 
satellite imagery to represent land cover for the years 1986, 1994 and 2008, respectively. For this 
study, TOPMODEL was run for periods of 10 years which enfolded the dates the satellite images 
were acquired. This study therefore provided insights into the hydrologic cycle and its regime when 
a natural or peri-urban catchment undergoes urbanization. Results can be used in the broader 
spectrum of integrated water resources management and are consistent with observations by [83]. 
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Finally, the study provided insights into hydrologic impacts by an increase in built-up areas and 
paved surfaces as a result of the urbanization of natural or peri-urban catchments. The findings of 
this study are highly relevant to many African countries, which are facing accelerated rural-urban 
migration over the past decades. The latter has been shown in several demographic surveys across 
Africa with many catchments undergoing rapid urbanization. For instance in Nairobi, Kenya [84] 
showed the rapid encroachment of urban areas using satellite imagery but hydrological impact 
assessments are still lacking. Similarly, [85] indicated a rapid increase in urban settlement between 1990 
and 2000 in Port Elizabeth, South Africa. These results have important implications on water 
resources management in Africa, where a number of countries are undergoing rapid urbanization. 

The authors recommend that besides field measurements to verify model parameters, future work 
must apply hydrologic models with a clear physical base, such as the Representative Elementary 
Watershed model (see [86,87]) to allow better evaluation of the impacts of land cover changes and 
rainfall distributions on the hydrologic regime. In addition, changes in actual evapotranspiration as 
caused by urbanization must be assessed spatially. Future work also should integrate climate change 
impacts with impacts of land conversions on streamflow since both have feedback impacts. 
Therefore, studying these impacts will greatly benefit the water managers in decision-making. In 
addition, by urbanization, unmonitored wastewater disposal into urban streams have impacts on 
streamflow and this is scheduled for future work.  
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Effect of Bias Correction of Satellite-Rainfall Estimates on 
Runoff Simulations at the Source of the Upper Blue Nile 

Emad Habib, Alemseged Tamiru Haile, Nazmus Sazib, Yu Zhang and Tom Rientjes 

Abstract: Results of numerous evaluation studies indicated that satellite-rainfall products are 
contaminated with significant systematic and random errors. Therefore, such products may require 
refinement and correction before being used for hydrologic applications. In the present study, we 
explore a rainfall-runoff modeling application using the Climate Prediction Center-MORPHing 
(CMORPH) satellite rainfall product. The study area is the Gilgel Abbay catchment situated at the 
source basin of the Upper Blue Nile basin in Ethiopia, Eastern Africa. Rain gauge networks in such 
area are typically sparse. We examine different bias correction schemes applied locally to the 
CMORPH product. These schemes vary in the degree to which spatial and temporal variability in 
the CMORPH bias fields are accounted for. Three schemes are tested: space and time-invariant, 
time-variant and spatially invariant, and space and time variant. Bias-corrected CMORPH products 
were used to calibrate and drive the Hydrologiska Byråns Vattenbalansavdelning (HBV)  
rainfall-runoff model. Applying the space and time-fixed bias correction scheme resulted in slight 
improvement of the CMORPH-driven runoff simulations, but in some instances caused deterioration. 
Accounting for temporal variation in the bias reduced the rainfall bias by up to 50%. Additional 
improvements were observed when both the spatial and temporal variability in the bias was 
accounted for. The rainfall bias was found to have a pronounced effect on model calibration. The 
calibrated model parameters changed significantly when using rainfall input from gauges alone, 
uncorrected, and bias-corrected CMORPH estimates. Changes of up to 81% were obtained for model 
parameters controlling the stream flow volume. 

Reprinted from Remote Sens. Cite as: Habib, E.; Haile, A.T.; Sazib, N.; Zhang, Y.; Rientjes, T. 
Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the 
Upper Blue Nile. Remote Sens. 2014, 6, 6688-6708. 

1. Introduction 

Any rainfall-runoff modeling requires accurate rainfall data as model input. However, accurate 
rainfall information in many world regions is hampered by limitations of ground-based 
observational networks. Rain gauge networks often have inadequate coverage and density, 
represent only point scale estimates and suffer from problems relating to data quality and 
inconsistency [1,2]. Alternative to in situ network data are satellite rainfall estimates (SREs), which 
potentially can be a viable alternative. However, SREs are known to suffer from sampling and 
estimation inaccuracies, which are manifested in the form of systematic (bias) and random  
errors [3–7]. Though a number of studies report on usage of SREs for runoff and soil moisture 
simulations [6,8,9], aspects of accuracy and representativeness of SREs for hydrologic modeling 
are not well investigated. 
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In the present study, we focus on bias correction of a particular SRE—the Climate Prediction 
Center (CPC) Morphing technique (CMORPH; [10]), and the effect of bias correction on 
hydrologic simulations for the Gilgel Abbay catchment, Lake Tana basin, Ethiopia. CMORPH is 
considered in this study owing to its relatively high space-time resolutions (30 min, 8 km). In this 
study CMORPH estimates are accumulated to a daily resolution, which matches the rain gauge 
sampling interval and the time step of the rainfall-runoff model used herein. A number of studies 
investigated the accuracy of CMORPH products across a range of space-time scales. Examples 
include seasonal or daily estimates at 0.25° × 0.25° spatial resolution [11–13], three-hourly estimates 
at 0.25° × 0.25° [14,15], and one-hourly estimates at 8 km × 8 km [1,5]. Results from these studies 
suggest that CMORPH estimates have significant systematic biases but also that estimates have 
random errors. Smith et al. [16] stated that CMORPH biases might be due to a diurnal sampling 
bias, tuning of the instrument or the rainfall algorithm, or unusual surface or atmospheric 
properties, which the algorithm does not correctly interpret. A Kalman filter approach has been 
recently adopted by the CMORPH developers to optimally integrate satellite-based estimates with 
rain gauge observations [17,18]. In the scientific literature, some evidence is presented that 
CMORPH bias exhibits spatio-temporal variation. For instance, Haile et al. [1] show that the total 
bias and its different components exhibit spatial variation in the Gilgel Abbay catchment, which is 
also selected for the present study. The authors concluded that over mountain areas CMORPH bias 
mostly is affected by missed rainfall detection. Particularly for lower elevated areas bias is affected 
by missed rainfall, false rainfall and differences in hit-rainfall estimates. For the Nile basin area, 
Habib et al. [11] showed that CMORPH bias (and other SREs) is largely affected by topography 
and latitude. The same study showed that CMORPH bias in the wet and dry seasons can be  
quite different. 

The aforementioned studies indicate that it is crucial to reduce the systematic and random errors 
in SREs before products can be used in hydrologic and water resources applications. 
Methodologies for bias correction are developed in multi-sensor, radar-gauge approaches [19–21] 
and triggered applications in satellite remote sensing. Examples are on monthly-based bias 
correction [22], disaggregation of bias at daily scale to hourly scale [23], and merging satellite and 
gauge data by means of a non-parametric kernel smoother [24]. Vila et al. [25] compared five 
merging schemes: additive bias correction, ratio bias correction, gauge-to-satellite monthly 
correction factors, and a combined scheme. The authors concluded that the combined scheme, 
which considers both additive and multiplicative bias, outperformed the others. Other studies of 
bias-correction to satellite rainfall products are reported in Hong et al. [26], Chiang et al. [27], Tobin 
and Bennett [28], and Tian et al. [29]. These studies suggest that selection of bias correction scheme 
should depend on the desired level of accuracy and assumptions to represent spatial and temporal 
rainfall characteristics. However, selection also depends on the data requirements, computational 
expenses, and, more importantly, the hydrologic application the bias-adjusted product is used for. 
Overall, bias-corrected satellite rainfall products are expected to better match station records 
compared to satellite only products even in complex terrain [30] and as such correction should 
improve hydrological applications by improved rainfall representation. However, results by 
hydrological applications are not consistent and require further assessment. 
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Artan et al. [31] showed that negative bias of a satellite rainfall product in rainfall-runoff 
modeling could result in deterioration of modeling results. They also showed that a hydrologic model 
requires recalibration when satellite rainfall data is used to replace use of in-situ rainfall data.  
Zeweldi et al. [32] reported increased performance of a rainfall-runoff model when the model was 
calibrated using satellite data than when it was calibrated using rain gauge data. However, 
calibration could result in parameter values that are unrealistic and beyond limits as the model 
attempts to compensate for the large errors in rainfall input. Behrangi et al. [33] found that  
bias-adjustment of satellite-based precipitation products is critical and can yield substantial 
improvement in capturing both the streamflow pattern and magnitude at six-hourly and monthly 
time scales. Yong et al. [34] showed an improvement in the performance of a rainfall-runoff model 
after applying gauge-based bias correction to satellite-only rainfall products. However, Bitew and 
Gebremichael [8] reported improved model performance when using a satellite-only product 
(TRMM 3B42RT) as compared to a satellite-gauge bias corrected product (TRMM 3B42). Such 
results could be partly attributed to the fairly poor quality and/or lack of spatial representativeness 
of the sparse gauges that were used for the bias correction.  

In the present study, the focus is mainly on analysis of the spatial and temporal variability of 
bias in CMORPH 30-min, 8 km × 8 km satellite-based rainfall product and on identifying the 
critical aspects of such variability from a hydrologic perspective in rainfall-runoff modeling. 
Results of such analyses are of relevance to product users to guide efforts for product adjustment 
before being used in further applications [35,36] and also for product developers to identify future 
needs for algorithmic enhancements. The specific objectives of this study are (i) to assess three bias 
correction schemes to the CMORPH 30-min, 8 km × 8 km product to adjust for spatial and 
temporal biases; and (ii) to assess how rainfall-runoff model calibration results are affected when 
bias-corrected CMORPH data is used instead of uncorrected and in situ rainfall data. The area of 
study is the Gilgel Abbay catchment in Ethiopia. The paper is structured as follows. Section 2 
describes the data sets, the bias correction schemes, the hydrologic model, and the calibration 
approach. Section 3 presents results and discusses the findings and Section 4 concludes on the study. 

2. Data and Methods 

2.1. Study Setting 

The study area is Gilgel Abbay catchment, which is the largest contributor to Lake Tana [37],  
the source of Upper Blue Nile River in Ethiopia. In the present study, the focus is on the gauged 
part of Gilgel Abbay for which daily time series of streamflow have been available since the 1970s  
(Figure 1). This part of the watershed is situated between latitudes of 10°56 N–11°22 N and 
longitudes of 36°49 E–37°24 E. It covers an area of about 1655 km2 with predominantly 
agricultural land cover and with clay to clay-loam as the prevailing soil type. The seasonal rainfall 
distribution of Gilgel Abbay is affected mainly by the location of the Intertropical Convergence 
Zone (ITCZ) with a rainy season, which coincides with the summer in the northern hemisphere 
(June–August). At short time scales (daily and sub-daily), rainfall distribution in this watershed is 



119 
 

 

affected by orographic factors and the presence of Lake Tana [38,39]. The lowlands of Gigel 
Abbay receive more intense and short lasted rainfall as compared to its highlands [40]. 

2.2. CMORPH and Local Gauge Data 

The satellite-rainfall product used in this study is the National Oceanic and Atmospheric 
Administration’s (NOAA) Climate Prediction Center (CPC) morphing technique (CMORPH) [10]. 
CMORPH combines rainfall estimates from multiple passive microwave (PMW) sensors, which 
include the Advanced Microwave Sounding Unit (AMSU-B), the Special Sensor Microwave  
Imager (SSM/I), the TRMM Microwave Imager (TMI), and the Advanced Microwave Scanning 
Radiometer—Earth Observing System (AMSR-E), respectively. To fill the time and space gap in 
the combined PMW based rainfall estimates, the algorithm used cloud motion vectors derived from 
spatial lag correlation of successive geostationary satellite IR images. These vectors are used to 
propagate the PMW based rainfall features for time periods between two successive PMW 
overpasses. The shape and intensity of the rainfall patterns is then morphed through linear 
interpolation using weights that are obtained from forward advection (previous to most current 
PMW overpass) and backward advection (most current to previous overpass) of rainfall features. 
The main advantage of CMORPH is its near real-time global coverage at relatively fine temporal 
and spatial scales (as fine as 30-min and 8 km × 8 km), which makes it a desirable candidate for 
hydrologic applications. In the current analysis, the 30-min, 8 km × 8 km CMORPH estimates are 
aggregated to daily time step to be consistent with rain gauge observation interval. In addition, 
streamflow time series are at daily time interval so aggregation results in optimal use of available 
satellite data to represent and to correct rainfall in respective time and space domains for stream 
flow modeling. Based on availability of rain gauge and streamflow data in the watershed, the 
current analysis period covers two years from January 2003 to December 2004. 

Data is obtained from 10 rain gauges in the watershed (Figure 1) which are operated by the 
Ethiopian Meteorological Agency (EMA). Daily rainfall from these gauges has been evaluated and 
used in [37,41–43] and serve as reference to evaluate satellite rainfall estimates. For the study 
period, the average annual rainfall over Gilgel Abbay was about 1700 mm. The average daily 
rainfall rate exceeded 10 mm/day for 20% of the time and reached as high as 35 mm/day. The 
gauge network (Figure 1) is sparse and stations are unevenly distributed over the watershed. As a 
result, the “true” or real world rainfall distribution may not be well represented by the network, as 
rainfall varies over the area following topographic variation [1,38,39]. 

Meteorological observations at three stations in the watershed (Dangila, Adet, and Bahir Dar; 
Figure 1) were used to estimate monthly potential evapotranspiration (PET) using the Penman-Montheith 
method [44], which were then used as input to the hydrologic model. 

Streamflow daily data is available for the upper part of Gilgel Abbay, which is gauged at Wotet 
Abbay, a small town near Bahir Dar. Consistency of streamflow daily time series was checked by 
visual inspection of concurrent rainfall and streamflow plots. We noticed that the baseflow record 
showed an abrupt increase in late 2005. Local people near the gauging site stated that the gauging 
station was moved by hundreds of meters downstream of the original site towards the end of 2005 
due to road construction. However, this was not confirmed by officials in the Ministry of Water 
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Energy. As a result we limited our analysis period to 2003 and 2004 for which CMORPH data is 
available and for which we have confidence in the quality of stream flow data. 

Figure 1. Study site showing the location of the Gilgel Abbay catchment and its eight  
sub-catchments within the Nile Basin. The locations of the ten (10) rain gauge stations 
and the streamflow gauge are indicated. Note that the unit of terrain elevation is meters.  
(a) Geographic location of study area; (b) Terrain elevation and rain gauge stations. 

 
(a) 

 
(b) 

2.3. Bias Formulation and Estimation 

Satellite-based rainfall estimates exhibit large systematic and random errors. The systematic 
errors (i.e., bias) persist when the estimates are aggregated over time and, hence, may cause large 
uncertainties in hydrologic modeling. In addition, models could augment or suppress rainfall biases to 
larger or smaller streamflow based on the response mode of the model. Therefore, bias in rainfall 
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products should be assessed and corrected before satellite rainfall products can be used in  
hydrologic applications. 

In the current study, we estimate and correct the bias in CMORPH estimates as follows. For a 
selected day (d) and gauge (i), the multiplicative daily bias factor (BF) at a certain CMORPH pixel 
with a collocated gauge can be formulated as follows Equation (1):  

 (1)

where G and S represent daily gauge and CMORPH rainfall estimates, respectively, i refers to 
gauge location, t refers to a Julian day number; and l is length of a time window for bias 
calculation. The subscript “TSV” stands for “Time-Space Variable” since the bias in this 
formulation is estimated for a particular location and a particular day. Based on some preliminary 
analysis by the authors on rainfall distributions in the study area, a fixed time window of l = 7 days 
was selected to allow for adequate rainfall accumulation for bias calculation while still accounting 
for temporal variability in BF. The BF factor was calculated for a certain day only when a 
minimum of five rainy days were recorded within the preceding seven-day window with a 
minimum rainfall accumulation depth of 5 mm, otherwise no bias is estimated (i.e., assigned a 
value of 1). We chose five rainy days with minimum accumulation depth of 5 mm to ensure 
stability of the bias factors and avoid exaggerated values as a result of dividing large satellite 
estimates by small gauge values. We evaluated sensitivity of BF to different window lengths of 3, 
7, and 10 days. We noticed that BF shows relatively lower sensitive during the wet season 
compared to the dry season. In the wet season, BF shows high variation and becomes highly erratic 
when the window length is reduced to three days as a result of small accumulation period. In the 
wet season, BF exceeds 2.0 for a three-day window length but is mostly well below 2.0 for a seven- 
and 10-day window length. 

It is noted that Equation (1) ignores errors introduced by using a single gauge to represent 
rainfall amounts at the scale of the CMORPH pixel. Haile et al. [1] showed that the error variance 
of the gauge representativeness error in Gilgel Abbay could contribute as much as 30%–52% to the 
total variance of CMORPH-gauge rainfall hourly differences. Using the current dataset, we found 
that the spatial correlation of rainfall in the study area, at 8 km separation distance, increases from 
0.55 at a daily scale to 0.91 for a seven-day accumulation scale. Therefore, it is reasonable to 
assume that the gauge representativeness error will be much smaller at a seven-day time window 
than that of the hourly base, and, thus, we proceed with using single-gauge observations as a 
reference for the bias estimation using Equation (1). 

2.4. Schemes for Bias Correction 

In the current analysis we test three schemes for bias correction:  

(i) The first one allows for correcting the bias at a pixel based (i.e., space variable) and at a daily 
scale (i.e., time varying), and is based on the using the BFTSV factor estimated from Equation 
(1). To apply a correction that accounts for spatial and temporal variability in the 
CMORPH bias, the pixel-based daily BFTSV factors were spatially interpolated using the 
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inverse distance weight (IDW) method to yield a spatial and temporally varying field of 
BFs that cover the entire study area. We followed the approach of Haile et al. (2009) [38] 
in the same study area who showed good interpolation results by IWD. The CMOPRH 
daily rainfall fields were then multiplied by the BFTSV bias fields for the respective time 
windows to result in a new set of CMORPH estimates that as such are bias-corrected in a 
temporally and spatially varying scheme. This procedure is similar to the local-bias 
correction algorithm developed by Seo and Breidenbach [19], which is adopted in the 
operational version of the National Weather System-Multisensor Precipitation Estimation 
(NWS-MPE) system. The use of Equation (1) applies a bias correction factor that varies in 
space and time domains. We refer to this formulation as time and space variant (TSV) bias 
correction. To assess the implications for ignoring or for accounting of variability of bias, 
two more bias estimation and correction schemes were tested:  

(ii) Time and space fixed (TSF) bias correction: in this formulation the bias is obtained by 
using gauge and CMORPH estimates over the entire domain and over the total duration of 
the sample Equation (2):  

 (2)

where n is the total number of gauges within the entire domain of the study and T is the full 
duration of the study period. The bias correction in this case is applied by multiplying the 
CMORPH estimates by the bias factor, BFTSF, to result in a new set of CMORPH estimates 
that are bias-corrected in a spatially and temporally-lumped scheme. 

(iii) Time variable (TV) bias correction: in this formulation the BF is spatially lumped over the 
entire domain but is still estimated for each daily time step Equation (3):  

 (3)

The bias correction in this case is applied by multiplying each daily CMORPH field by the  
daily bias factor, BFTV, to result in a new set of CMORPH estimates that are bias-corrected in a 
spatially-lumped but temporally-varying scheme. 

2.5. Hydrologiska Byråns Vattenbalansavdelning (HBV-96) Hydrologic Model 

In the present study, the Hydrologiska Byråns Vattenbalansavdelning (HBV-96) rainfall-runoff 
model [45] is used to perform the rainfall-runoff analysis using rainfall estimates by the three 
correction schemes. The HBV-96 model has been extensively evaluated for different regions on the 
globe [46–50] including Gilgel Abbay catchment [37,41,43]. HBV-96 can be classified as a 
conceptual model that relies on water balance equations to simulate runoff and mass exchanges 
across a set of surface and subsurface zones. Inputs to the model include rainfall, temperature, 
potential evapotranspiration, and percentage of forested and non-forested catchment areas. 
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The storage based HBV-96 has four routines that include (i) a precipitation accounting routine;  
(ii) a soil moisture routine; (iii) a quick runoff routine; and (iv) a base flow routine. The approach is 
characterised by three stores, which are the soil moisture reservoir, the upper zone store and the 
lower zone store. From the upper zone store quick runoff is simulated from the lower zone store 
base flow runoff is simulated. Routing of streamflow is optional and can be de-activated in model 
simulations. The precipitation accounting routine partitions precipitation into rainfall and snow 
based on a threshold value (TT). Precipitation is in the form of snow in case the actual temperature 
(T) is lower than TT. In the Gilgel Abbay area, the temperature is much higher than common 
values for TT and, as such, precipitation only is in the form of rainfall. 

The soil moisture routine controls the formation of direct and indirect runoff. Direct runoff  
occurs when the simulated soil moisture (SM) in the soil moisture reservoir exceeds the maximum 
storage capacity as represented by field capacity (FC). Otherwise, rainfall infiltrates (IN) the soil 
moisture reservoir to add to the actual storage and to add to the flow of water to the upper zone 
store (indirect runoff). 

Indirect runoff (R) is defined as follows:  

 
(4)

This equation indicates that indirect runoff increases with increasing soil moisture storage (SM)  
but it reduces to zero when infiltration ceases. BETA is a parameter accounting for the non-linearity 
of indirect runoff from the soil layer. 

Evapotranspiration losses are calculated from the soil moisture reservoir. Actual 
evapotranspiration (Ea) is highest (i.e., reaches its potential value (Ep)) when SM reaches or 
exceeds a certain ratio of FC. The ratio, denoted as LP, is used as a calibration parameter. 
Otherwise, Ea declines linearly as a function of soil moisture deficit represented by SM/FC:  

(5)

  
(6)

Percolation (PERC) to the lower zone store occurs when water is available in the upper zone 
store. PERC is treated as a time-invariant process with a fixed value throughout the simulation 
period. Capillary transport is estimated as a function of soil moisture deficit (FC-SM) and a 
maximum value for capillary flow (CFLUX):  

 
(7)

Quick runoff (Qq) and slow (base) flow (Qs) are defined as follows: 

(8)

 (9)

where UZ is the actual storage in the upper zone store, ALFA is a measure for the non-linearity of 
flow, Kq is a recession coefficient for quick runoff, LZ is the actual storage in the lower zone store 
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and Ks is a recession coefficient for base flow. According to this formulation, the model has 8 
parameters that can be used for model optimization and calibration, namely: FC, BETA, LP, 
ALPHA, Kq, Ks, PERC, and CFLUX. 

Considering the large catchment area and significant topographic variation, and to make use of 
the spatially distributed data from CMORPH, the catchment has been partitioned in eight  
sub-catchments (Figure 1). The eight sub-catchments have size of 76, 121, 150, 165, 240, 242, 245, 
and 414 km2. 

2.6. Model Calibration and Evaluation 

The model was calibrated using four sets of rainfall data based on gauge observations, and three 
variants of bias corrected CMORPH estimates. In both cases, rainfall data were aggregated from 
their original spatial resolutions (gauge-point, or CMORPH pixel) to the scale of each sub-catchment. 

The following two metrics were used to assess performance of the HBV-96 rainfall-runoff 
model: Nash-Sutcliffe (NS) efficiency, which provides a measure of random differences between 
simulated and observed streamflows, and QBias, which measures systematic differences (bias) in the 
simulated streamflow volumes:  

(10)

 (11)

where Qsim and Qobs represent simulated and observed daily flows, respectively, at a certain day i, 
and n represents the number of days in the sample. The over-bar symbol denotes the mean 
statistical operation. The values of NS, which is dimensionless, can range between –  and 1, where 
a value of 1 indicates a perfect fit. Similarly, a QBias value of 1 reflects bias-free streamflow 
simulations whereas streamflow overestimation and underestimation are reflected by bias values 
that are larger or smaller than 1, respectively. 

A Monte-Carlo procedure was used to calibrate the HBV-96 model. In this procedure, prior  
ranges of the eight calibration parameters are selected based on the parameter value ranges 
specified by Rientjes et al. [37] who applied the HBV-96 model in a regionalization study in the 
(entire) Lake Tana basin area. In that particular study 60,000 parameters sets are generated 
randomly assuming a uniform distribution of parameter values within the specified, posterior, value 
ranges. The HBV-96 model was run for each parameters set and the corresponding objective 
function values (NS and QBias) are calculated. Following Rientjes et al. [37], the optimum 
parameters set is selected as the average value of the 25 parameter sets that are ranked highest in 
terms of the NS values. It is noted that a similar approach is followed in this study when calibrating 
the model in case CMORPH rainfall data is used as model input. 
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3. Results 

3.1. Evaluation of CMORPH Estimates 

Before presenting the results of the different bias correction schemes, we first examine the 
temporal and spatial variability in the CMORPH bias field, as reflected by BFTSV (Figure 2). The 
lowest, highest and mean values of BFTSV for a seven-day moving window are shown in the figure. 
These values are summarized based on BFTSV values calculated at the ten rain gauge stations within 
the study area. For each calendar day the minimum, maximum and mean are shown for the 
ensemble of network stations. The difference between the lowest and highest values shows the 
extent of the variation of the bias across the 10 stations in the study area. The mean values show 
pronounced seasonal variations and have different patterns throughout the two years. In general, 
CMORPH reports smaller rainfall amounts than gauge observations from mid-June to mid-August 
2003, but reports larger rainfall amounts towards the end of the rainy season of 2003. This pattern 
is not shown in 2004, where positive and negative biases in CMORPH show lower variation in 
time. Overall, these results indicate that the bias in the CMORPH product exhibits pronounced 
variability in space and time over the study area. Possibly, this could be related to variations in rain 
generation mechanisms [11] but further investigations are needed for confirmation. 

3.2. Results on Rainfall Bias Correction 

To examine the implications of space and time variability presented above (Figure 2), we 
applied the three bias correction schemes described above (Equation (1)), time-space fixed (TSF), 
time variable (TV), and time-space variable (TSV), to the CMORPH product. We first assess how 
the different bias correction schemes impact the catchment-average rainfall at a monthly scale. 
Table 1 shows a summary of the ratios of CMORPH monthly catchment-average rainfall amounts 
(before and after correction) to the corresponding gauge amounts. Without bias correction, 
CMORPH mostly underestimated monthly rainfall by up to 37%. In 2003, the deviation of 
CMORPH during the wettest months (June-August) is reduced when TSF, TV, or TSV corrections 
are used. TSV correction shows noticeable change (up to 0.19) than TSF correction (only 0.01) in 
July 2003. In 2004, TSF correction leads to deterioration of the monthly agreement probably since 
their temporal variation is too pronounced to be ignored. The importance of accounting for 
temporal variation in CMORPH bias is illustrated again by the fact that TV and TSV corrections 
reduced the bias in 2004 by up to 0.07 and 0.07–0.14, respectively. 
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Figure 2. Mean, minimum and maximum of CMORPH daily bias factors (BFTSV,  
Equation (1)) evaluated for the ensemble of ten network stations. 

 

Table 1. Ratios of monthly rainfall amounts of Climate Prediction Center-MORPHing 
(CMORPH) (without and with three bias correction schemes) to the corresponding  
gauge amounts. 

Year Rainfall Product June July August September October 

2003 

CMORPH 0.69 0.63 0.88 1.25 0.74 
CMORPH TSF 0.71 0.64 0.9 1.28 0.76 
CMORPH TV 0.74 0.82 0.94 0.9 0.63 

CMORPH TSV 0.87 0.81 0.99 0.95 0.63 

2004 

CMORPH 0.83 1.15 0.8 0.99 0.84 
CMORPH TSF 0.79 1.09 0.76 0.94 0.8 
CMORPH TV 0.9 0.87 0.87 0.93 0.93 

CMORPH TSV 0.95 0.86 0.87 0.96 0.98 

3.3. Model Parameter Optimization Using Different Rainfall Inputs 

We calibrated the HBV-96 model using gauge and CMORPH rainfall inputs for the year  
2003–2004 (Table 2). Calibration based on the rain gauge network data serves as a reference for 
further assessments on effectiveness of bias-correction to the CMORPH estimates. The model was 
recalibrated using the satellite rainfall fields to examine how the model parameters are affected by 
bias in the rainfall input. In theory, each rainfall input represents a different model forcing and may 
result in different parameter values and model performance level as measured by NS and Qbias. 
Independent calibration of the HBV-96 model for different rainfall inputs resulted in satisfactory 
model performance (NS = ~0.8 and QBias = ~0.9). All optimum parameter values obtained using the 
correction schemes are within the allowable value ranges. The values of the optimized model 
parameters are inter-compared and percent change of each parameter value is shown with respect to 
the reference case. To allow comparison of parameter values over a common scale, changes are 
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calculated after normalizing the parameter values using their allowable minimum and maximum 
values, which are set equal for all simulations. We note that the results of parameter optimization 
are affected by the rainfall input as shown by the percentage errors in Table 2. In particular, 
parameters (FC, Beta and LP) which control the volume of the simulated hydrograph showed large 
changes of up to 81% compared to the parameters using the reference gauge data sets. There is also 
a significant change in the quick recession coefficient (Kq), whereas those that control groundwater 
contributions (Ks, PERC and CFLUX) are less affected. 

Table 2. Calibrated values of the Hydrologiska Byråns Vattenbalansavdelning (HBV) 
model parameters using gauge and bias corrected CMORPH. Numbers in brackets 
represent percent changes in each parameter value (after normalizing with the allowable 
minimum and maximum range) with respect to the gauge-driven reference case. The 
last two rows show the NS and QBias values. 

Parameter Unit Minimum Maximum Gauge 

CMORPH with Bias Correction 

Time-Space 
Fixed (TSF) 

Space Fixed 
and Time 

Variable (TV) 

Time-Space 
Variable 

(TSV) 
FC mm 100 800 373 186 ( 68) 177 ( 72) 185 ( 69) 

BETA -- 1 4 1.351 1.599 (71) 1.562 (60) 1.625 (78) 
LP -- 0.1 1 0.544 0.888 (77) 0.905 (81) 0.775 (52) 

ALPHA -- 0.1 3 0.271 0.242 ( 17) 0.236 ( 20) 0.269 ( 1) 
Kq day 1 0.0005 0.15 0.073 0.035 ( 52) 0.050 ( 32) 0.038 ( 48) 
Ks day 1 0.0005 0.15 0.087 0.086 ( 1) 0.083 ( 5) 0.074 ( 15) 

PERC mm·day 1 0.1 2.5 1.348 1.422 (6) 1.208 ( 11) 1.339 ( 1) 
CFLUX mm 0.0005 2.0 0.886 0.898 (1) 0.805 ( 9) 0.892 (1) 

NS -- -- -- 0.8256 0.703 0.8038 0.8177 
QBias -- -- -- 0.995 0.982 0.988 0.982 

3.4. Effects of Rainfall Bias Corrections on Streamflow Simulations 

Next, we applied the calibrated parameter set of the reference case to simulate streamflow using 
the uncorrected and bias-corrected CMORPH rainfall estimates. We chose to use the reference set 
of parameters to in all model simulations (gauge and CMORPH) to isolate the effect of rainfall bias  
from other sources of model uncertainty (e.g., parameter uncertainty). Figure 3 shows streamflow 
hydrographs for the reference case and for uncorrected CMORPH estimates. At the beginning and 
middle of the 2003 wet season, differences between CMORPH gauge rainfall amounts are negative 
for most of the time. For this reason, lower streamflow discharges are simulated. Towards the end 
of the rainy season of 2003, positive rainfall differences start to appear but this did not cause higher 
streamflow discharges than observed. It appears that the excess rainfall was stored in the different 
model stores instead of generating runoff. Relatively large positive differences in rainfall dominate 
towards the beginning of the wet season of 2004. This rainfall difference resulted in higher 
streamflow simulations than observed. The rainfall difference becomes negative throughout August 
2004, but it did not produce negative streamflow biases, as the model stores had the excess rainwater 
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from previous time steps stored. Overall, these results indicate that CMORPH bias propagates into 
model simulations. The bias correction affects moisture conditions which yielded lower (excess) 
runoff than observed. 

Figure 3. (a) Comparison of daily catchment-average gauge and uncorrected CMORPH 
rainfall. (b) differences in daily rainfall estimates between gauge and CMORPH.  
(c) and (d) observed and simulated stream flow hydrographs for the year June  
2003–December 2004 based on rainfall inputs from gauges and uncorrected CMORPH. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Next, we evaluated the effect of bias correction in CMORPH on HBV-96 model simulations 
(Figure 4). Here we show the streamflow hydrograph that is simulated using TSV bias-corrected 
CMORPH data, which produced the best result. Despite the applied bias correction, there are large 
differences (>10 mm·d 1) between catchment-average daily rainfall estimates obtained from TSV 
and gauges. However, it is apparent that the large CMORPH bias in 2003 was substantially 
reduced. As a result, the patterns and volumes of the observed hydrographs were better captured 
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when using the bias-corrected CMORPH estimates than the uncorrected ones. Some observed peak 
flows were better captured as a result of correcting for the rainfall bias. The improvements are 
particularly substantial for the 2003 hydrographs where the uncorrected CMORPH had large 
negative bias. We note that use of bias corrected rainfall data has some advantages over gauge only 
data; however, some aspects of observed hydrograph were better captured by using gauge only data 
(e.g., the second half of July 2003). The simulated hydrographs based on both rainfall inputs show 
smaller fluctuation than the observed hydrograph. Such mismatches could be caused by 
deficiencies in the HBV-96 model structure, poor rainfall representation by the low density of the 
rain gauge network, or errors in streamflow observations, among others. 

Figure 4. (a) Comparison of daily catchment-average gauge rainfall and the 
corresponding TSV bias-corrected CMORPH. (b) differences in rainfall estimates 
between gauge and TSV bias-corrected CMORPH. (c) and (d) observed and simulated 
stream flow hydrographs for the year June 2003–December 2004 based on rainfall 
inputs from gauges and TSV bias-corrected CMORPH. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Next, we quantify the propagation of CMORPH rainfall biases in model simulations (Table 3).  
To separate the effect of rainfall errors from effects of model parameter uncertainty on model 
performance, gauge-based model simulations served as reference to compare the model 
performance objective functions. In June–August 2003, CMORPH rainfall amounts are smaller 
than those from gauges by 18% (CMORPH bias ratio = 0.82), which causes difference in 
streamflow volume of 27% (streamflow bias = 0.73) and increased for the same period of 2004 
(from 5% to 27%). This rainfall-to-streamflow bias amplification persists for all of the 
CMORPH rainfall inputs but its extent became smaller when the temporal variability of the bias is 
considered (i.e., when using time-varying bias correction, BFTSV). For example, for CMORPH TSV 
rainfall input, the bias increased from 13% to only 17% in 2003 while it increased from 8% to 
20% in 2004. The observed changes of rainfall-to-streamflow biases are probably due to the  
non-linearity in the rainfall-runoff relation and subsequent runoff generation in the HBV-96 model. 
For instance, small bias in rainfall input can propagate to result in larger streamflow bias when the 
catchment is wet than when it is dry. 

Table 3. Ratios of catchment-average seasonal rainfall amounts of CMORPH (without  
and with three bias correction schemes) to the corresponding gauge amounts. The 
corresponding values for streamflow biases (QBias) are also presented. The NS 
efficiency values for the streamflow simulations are shown between brackets. 

Year Performance Measure CMORPH CMORPH (TSF) CMORPH (TV)  CMORPH (TSV)

June–October 2003 
Rainfall Ratio 0.818 0.819 0.806 0.869 

Streamflow QBias 0.734 (0.19) 0.762 (0.21) 0.764 (0.71) 0.831 (0.79) 

June–October 2004 
Rainfall Ratio 0.947 0.904 0.898 0.917 

Streamflow QBias 0.726 (0.73) 0.727 (0.73) 0.792 (0.79) 0.804 (0.80) 

Streamflow bias, QBias (Equation (9)), obtained using the uncorrected as well as the  
bias-corrected CMORPH rainfall inputs are shown in Figure 5 (see also Table 3). As compared to 
gauge-based simulations, the uncorrected and bias-corrected CMORPH data resulted in 
consistently smaller streamflow in the rainy season (June–August) of 2003 but larger streamflow 
towards the end of the rainy season. Note that this pattern has some resemblance to that of the 
rainfall biases (Figure 2). However, the temporal pattern of the streamflow biases in both 2003 and 
2004 are smoother than those of the rainfall inputs. This possibly is a result of the filtering effect of 
the runoff model as it converts highly variable rainfall input to streamflow. The significantly large 
rainfall bias in October of 2004 is translated to a smaller streamflow bias probably as the model 
became relatively dry and therefore did not convert the excess rainfall input into surface runoff. 
CMORPH-based streamflow in 2003 is mostly 0.25 to 0.5 times the gauge observations showing 
underestimation though this streamflow differences became much smaller in 2004. Overall, these 
differences were reduced when the bias-corrected CMORPH rainfall amounts served as model 
inputs. An exception is that TSF, which is obtained using a space-time constant correction factor, 
only slightly altered the streamflow bias. For most parts of the wet season, the streamflow bias 
significantly decreased when time variable bias correction is applied. Accounting for both spatial 
and temporal variation of the CMORPH bias factor further reduced the streamflow bias. 
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Figure 5. Streamflow bias (QBias, Equation (9)) of streamflow simulations driven by 
different CMORPH rainfall inputs. QBias was calculated using a moving window of past  
7 days. Streamflow simulations driven by gauge observations served as the reference. 

 

4. Conclusions 

Various studies have indicated that satellite rainfall products are contaminated with systematic 
and random errors. However, not much has been done to illustrate how these products can be made 
applicable for various purposes by reducing their errors. In this study, the effect of rainfall bias 
correction in a high-resolution satellite-based product (CMORPH) on the performance of  
a rainfall-runoff model was assessed. The study is unique as we assess the importance of space and 
time aspects of CMORPH bias for rainfall-runoff modeling in a data scarce catchment. Our 
findings contribute to efforts that aim towards enhancing the real-world applicability of satellite 
rainfall products. The study site is the Gilgel Abbay catchment at the source of the Blue Nile in 
Eastern Africa—an example of many world regions that can benefit from satellite-based rainfall 
products for resource assessments and monitoring. Results and conclusions of the present study are 
summarized below. 

CMORPH has large rainfall biases ( 2.3 mm·d 1 on average and by up to ±30 mm·d 1) with 
spatial as well as inter-annual and intra-annual variations in Gilgel Abbay catchment. Such biases 
could be related not only to rain generation mechanisms but also to the sampling and retrieval 
errors of satellite products [51]. We have showed through cross validation that it is not always the 
case that gauge-only, or satellite-only estimates, outperform one another. This suggests rainfall 
estimation can benefit from combined use of satellite and rain gauge data. 

We applied three bias correction schemes to correct the bias CMORPH estimates. Space-time 
fixed, time variable and space-time variable bias factors were estimated to correct CMORPH 
estimates. One of the significant achievement of analysis indicated that the most important aspect 
of the CMORPH bias is its temporal variation as accounting for it substantially reduced the rainfall 
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bias. In some instances, it was not possible to noticeably reduce the catchment-average bias. 
Particularly, absence of gauges in the middle and south-east parts of the catchment is presumed to 
have contributed to the observed mismatches between bias-corrected CMORPH and gauge  
rainfall amounts. 

An application of the HBV hydrologic model indicated that the model should be calibrated 
independently for satellite-only or satellite-gauge rainfall data in order to achieve high model 
performance. However, we observed that the calibration procedure compensated for rainfall input 
errors by changing the optimum values of model parameters as rainfall input changes. In particular, 
parameters that control the volume of the simulated hydrograph showed largest sensitivity to the 
different rainfall inputs. However, it was noted that the optimal parameter values stayed within the 
physically allowable ranges. 

HBV better captured observed hydrograph patterns and volume when bias-corrected CMORPH 
estimates were used instead of the uncorrected estimates. We observed that the runoff model 
translates small rainfall errors to larger streamflow errors. The magnitudes of such error 
amplifications became smaller for bias-corrected satellite data than those for the satellite-only data. 
In the present study, 18% bias of CMORPH rainfall inputs is translated to 27% streamflow bias. 
The bias amplification was reduced (from 13% rainfall bias to only 17% streamflow bias) when 
space and time varying bias corrections were applied to the CMORPH rainfall input. Accounting 
for the temporal variability of CMORPH bias has the largest influence on model simulations and 
should be taken into account. The error propagation is found to depend, not only on errors in 
rainfall inputs, but also on the accumulated rainfall which affect the actual moisture and water 
storage in the model stores. Future studies should assess comparative advantages of various bias 
correction algorithms that account for the temporal aspects of bias and that received applications in 
climate change and radar rainfall studies. There is also a need to devote efforts towards 
operationalizing the bias correction algorithms. 
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Applicability of Multi-Frequency Passive Microwave
Observations and Data Assimilation Methods for Improving
Numerical Weather Forecasting in Niger, Africa
Mohamed Rasmy, Toshio Koike and Xin Li

Abstract: The development of satellite-based forecasting systems is one of the few affordable

solutions for developing regions (e.g., West Africa) that cannot afford ground-based observation

networks. Although low-frequency passive microwave data have been used extensively for land

surface monitoring, the use of high-frequency passive microwave data that contain cloud information

is very limited over land because of strong heterogeneous land surface emissions. The Coupled

Atmosphere and Land Data Assimilation System (CALDAS)was developed by merging soil moisture

information estimated from low-frequency data with corresponding high-frequency data to estimate

cloud information and, thus, improve weather forecasting over Niger, West Africa. The results

showed that the assimilated soil moisture and cloud distributions were reasonably comparable to

satellite retrievals of soil moisture and cloud observations. However, assimilating soil moisture

alone within a mesoscale model produced only marginal improvements in the forecast, whereas the

assimilation of both soil moisture and cloud distributions improved the simulation of temperature and

humidity profiles. Rainfall forecasts from CALDAS also correlated well with satellite retrievals. This

indicates the potential use of CALDAS as a reliable forecasting tool for developing regions. Further

developments of CALDAS and the inclusion of data from several other sensors will be researched in

future studies.

Reprinted from Remote Sens. Cite as: Rasmy, M.; Koike, T.; Li, X. Applicability of Multi-Frequency

Passive Microwave Observations and Data Assimilation Methods for Improving Numerical Weather

Forecasting in Niger, Africa. Remote Sens 2014, 6, 5306–5324.

Nomenclature

AMSR Advanced Microwave Scanning Radiometer

AMSR-E AMSR on Earth Observing System

AMSR-2 AMSR-2nd generation on GCOM-W1 satellite

NCEP National Centers for Environmental Prediction

LPRM NASA Land Parameter Retrieval Model

ARPS The Advanced Regional Prediction System

CALDAS Coupled Atmosphere and Land Data Assimilation System

EnKF Ensemble Kalman Filter

CMDAS Cloud Microphysics Data Assimilation System

LDAS Land Data Assimilation Sysatem

LDAS-A LDAS coupled with an Atmospheric model

NWP Numerical Weather Prediction

IR data InfraRed data
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SiB2 Simple Biosphere model version-2

TRMM Tropical Rainfall Measuring Mission

1. Introduction

Africa is a continent that is vulnerable to the effects of global warming and climate

change/variability, which will increase the incidences of abnormal weather, such as frequent

flooding and prolonged drought [1]. Numerical Weather Prediction (NWP) in West Africa is

still underdeveloped because of several problems (e.g., lack of data, inadequate forecast system,

difficulties in simulating land/atmospheric processes, and lack of forecast verification exercises).

NWP is mainly associated with the initial-boundary-values problem; i.e., given an estimate of the

initial state of the atmosphere and land surface, the model forecasts the evolutions of both. A

greater number of high quality observations that more fully represent the complete nature of the

initial atmosphere and land surface would greatly improve the forecasting capabilities of NWP

models.Therefore, the lack of reliable in situ data with which to initialize the NWP model is the

most challenging problem regarding forecasting in underdeveloped regions.

The capability of remote sensing to contribute to the prediction of the Earth’s weather and climatic

systems has been demonstrated in many scenarios. Although many studies have been based on the use

of satellite data in West Africa, only a few have considered the use of satellite data for NWP modeling

and validation [2]. Accordingly, this research investigates the use of passive microwave satellite

observations with a mesoscale model in West Africa. In microwave frequencies, the dielectric

property of materials allows the quantitative estimation of moisture quantities such as soil moisture,

vegetation water, snow water content, and cloud condensate [3–6]. Thus, the potential for the use

of space-borne microwave observations in NWP has been advanced considerably by the launch of

several sophisticated platforms (e.g., Terra, Aqua, and the Global Change Observation Mission).

Furthermore, low-frequency microwave observations provide information on soil moisture that is

very useful for enhancing NWP model forecasting through improved initialization [7,8]. However,

the few studies that have been performed on the assimilation of soil moisture observations into NWP

models have shown several limitations (e.g., retrieval and preprocessing of soil moisture products,

Cumulative Distribution Function matching, difficulties in defining an observation operator that

changes spatially and temporarily, and time constraints for the use of near-real-time applications).

Thus, they recommended the application of assimilation schemes that are more advanced [9,10].

To overcome such problems, an on-line system (i.e., Land Data Assimilation System coupled with

Atmospheric model (LDAS-A)) was developed to directly assimilate lower frequency microwave

radiance from the Advanced Microwave Scanning Radiometer (AMSR) for updating realistic soil

moisture content in a mesoscale model and the results were presented in [11]. However, because

of limited satellite observations (e.g., AMSR-E and AMSR-2, twice daily maximum), the improved

land surface conditions often suffered from significant errors and drift due to biases in the predicted

forcing (e.g., rainfall and solar radiation) that misguided the subsequent forecast [11,12]. Thus, this

particular problem rendered the on-line land data assimilation ineffective in NWP models.
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Clouds directly affect surface forcing (i.e., downward radiation and rainfall), and thus they affect

the estimation of the Earth’s surface water and energy budgets. Similar to microwave sounding

observations (e.g., Advanced Microwave Sounding Unit (AMSU)), passive microwave images (e.g.,

AMSR-E and AMSR-2) also contain information on cloud fields at higher frequencies (e.g., 89

GHz). It is also noteworthy to mention the Global Precipitation Measurement mission, which is the

first coordinated international satellite network to provide near-real-time observations of radar and

microwave images across a range of frequencies (10–183 GHz) every 3 h anywhere on the globe.

However, the increasing abundance of data arising from several platforms has not been used well

within NWP models. In fact, the 89-GHz frequency is more sensitive to cloud information compared

with other channels of the AMSR-E, but it also contains information of land surface emission.

Obtaining atmospheric information from combined land-atmosphere signals is very challenging

because the strong heterogeneous land surface emissions mask the very weak atmospheric signals.

When land surface emissions are estimated as accurately as possible, then the weak signal of the

cloud fields from the combined signals can be converted into realistic representations of the cloud

fields for the NWP models.

Consequently, the Coupled Atmosphere and Land Data Assimilation System (CALDAS) was

developed as an improvement of the LDAS-A. CALDAS assimilates lower frequency data of

AMSR-E/AMSR-2 to improve the representation of land surface conditions and it merges them with

higher frequency data of AMSR-E/AMSR-2 to improve the representation of cloud conditions over

land surfaces. CALDAS results from the Tibetan Plateau have shown that simultaneous assimilation

of land and cloud conditions improved the biases in land surface states, cloud representation, and

forcing to land surface models, which enhanced land-atmosphere interactions [12].

As a continuation from our previous study [12], this work addresses the application of CALDAS

as a weather forecasting system, simulating short-term weather conditions over a mesoscale domain

of Niger in West Africa. Model performance is investigated using available ground-based data and

satellite observations.

2. Dataset, Models and Method

2.1. Dataset

In this research, data from the National Centers for Environmental Prediction (NCEP) were used

for model simulations, and AMSR-E brightness temperature data were used for soil moisture and

cloud data assimilation. The other data sets listed under this section were used for the analysis and

validation of the model outputs.

2.1.1. Initial and Boundary Conditions

The initial and lateral boundary conditions were derived from the NCEP data. These NCEP-FNL

(Final) operational global analysis data are available as a 1◦× 1◦ grid at 6-hourly intervals. To obtain

the corresponding initial and boundary conditions required to run the mesoscale model, analysis data
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available at 26 pressure levels were used. Variables (e.g., pressure, geopotential height, temperature,

relative humidity, and u and v winds) required for the mesoscale model simulations were interpolated

from the pressure levels.

2.1.2. AMSR-E Brightness Temperature Data

AMSR-E is a total power passive microwave radiometer that measures horizontally and vertically

polarized brightness temperatures at separate frequencies of 6.925, 10.65, 18.7, 23.8, 36.5, and

89.0 GHz. Its individual measurements have spatial resolutions varying from ∼0.05◦ at 89.0 GHz

to ∼0.5◦ at 6.925 GHz. Because of spatial resolution differences, we used the nearest neighbor

interpolation method to resample the data to fit the horizontal resolution of our model (∼0.05◦). We

used vertical polarizations of 6.925 and 10.65 GHz to retrieve soil moisture information, because the

atmosphere can be considered transparent at these frequencies. The 89-GHz band of the AMSR-E

shows high sensitivity to cloud water content and precipitation compared with other channels.

Consequently, the 89-GHz vertical polarization was used to assimilate cloud information over the

land surface. The motivation for using vertical polarization is that it is less sensitive than horizontal

polarization to land surface roughness and vegetation. The calibrated brightness temperature (Level

1B) data were obtained from the Japan Aerospace Exploration Agency (JAXA).

2.1.3. In Situ Data

In situ data were obtained from the African Monsoon Multidisciplinary Analysis database.

Atmospheric profile observations were retrieved from radiosondes (Vaisala radiosonde RS92)

launched four times daily from the Niamey (2.17◦E, 13.48◦N) station in June 2006. The associated

soil conditions were either missing or unsuitable for validation during the simulation period.

Consequently, comparisons were performed using satellite-derived soil moisture products.

2.1.4. Satellite-Derived Soil Moisture Products

JAXA’s soil moisture products are based on AMSR-E data by applying the 10–36 GHz algorithm

for simultaneous retrieval of the soil moisture and vegetation water content from two indices: the

polarization index and index of soil wetness [13]. These global moisture products are available twice

daily at 0.1◦ spatial resolution.

National Aeronautics and Space Administration (NASA) soil moisture products were derived

from the AMSR-E data and Land Parameter Retrieval Model (LPRM). The LPRM uses dual

polarized channels (6.925 or 10.65 GHz) for the retrieval of both surface soil moisture and

vegetation water content [14]. These global moisture products are also available twice daily at 0.25◦

spatial resolution.

2.1.5. Satellite Cloud and Rainfall Products

The global full-resolution (∼0.04◦) infrared (IR) data, merged from several geostationary

satellites (∼11 micron channels), and available from NASA at 30-min intervals, were used as cloud
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observations. Lower brightness temperatures in the IR images indicate sufficiently thick clouds

whose cloud tops radiate at the atmospheric temperature at higher altitudes.

Rainfall data derived from the Tropical Rainfall Measuring Mission (TRMM) were used for

model validation. These gridded estimates (3B42) are available with 3-hourly temporal resolution

and 0.25◦ × 0.25◦ spatial resolution in a global belt extending across latitudes from 50◦S–50◦N.

2.2. Models

CALDAS (Figure 1) has three subsystems: (1) a land-atmosphere coupled mesoscale model

(ARPS-SiB2); (2) a Land Data Assimilation System (LDAS); and (3) a Cloud Microphysics

Data Assimilation System (CMDAS). Here, the combinations of the ARPS-SiB2-LDAS and

ARPS-SiB2-LDAS-CMDAS models are named LDAS-A and CALDAS, respectively. All three

models (i.e., ARPS-SiB2, LDAS-A, and CALDAS) shared the same atmosphere-land couple

model (i.e., ARPS-SiB2) and same settings of physics and parameterizations. ARPS-SiB2 model

simulation was a simple dynamical downscaling of GCM analysis data. The only difference

between ARPS-SiB2 and LDAS-A simulations is that LDAS-A used additional satellite observed

soil moisture contents compared to ARPS-SiB2. Similarly, the only difference between LDAS-A

and CALDAS simulations is that CALDAS used additional satellite observed cloud data. Detailed

information and formulations on LDAS-A and CALDAS are given in [11,12], respectively; however,

the following sections provide a brief explanation of their formulation.

Figure 1. Schematic diagram of the Coupled Atmosphere and Land Data Assimilation

System (CALDAS).
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The Advanced Regional Prediction System (ARPS) is a comprehensive regional- to storm-scale

prediction model, and its atmospheric prediction component is a three-dimensional nonhydrostatic

compressible model [15]. The LDAS consists of the Simple Biosphere model version 2 (SiB2) [16],

which functions as a model operator for LDAS as well as the land surface scheme for ARPS, together

with a physics-based radiative transfer model as the observation operator, and an Ensemble Kalman

Filter (EnKF) [17] as the assimilation algorithm.

A land surface radiative transfer algorithm has been developed based on the large contrast

between the dielectric constants of dry soil (∼4) and water (∼80) for lower microwave frequencies

(i.e., 1–15 GHz). By neglecting atmospheric and rainfall effects and by assuming that the reflection at

the surface is much less than the radiation from the surface and vegetation layers at lower frequencies,

the brightness temperature Tb at the satellite level is given by [18]:

Tb = (1−Rp) ∗ Ts ∗ exp(−τc) + (1− ωc) ∗ Tc ∗ (1− exp(−τc)) (1)

here, Rp is the surface reflectivity and Ts is the surface physical temperature (K), ωc is the

single-scattering albedo of the canopy, τc is the vegetation optical thickness and Tc is the canopy

temperature (K).

In the field of hydrology, the EnKF has been applied to soil moisture estimation and it has been

found to perform well against the variational assimilation method [19,20]. An overview of the EnKF

for soil moisture assimilation is given below.

Consider X=[w1, w2, w3]
T as a state variable and the first estimate, for which w1, w2 and w3 are

the soil moisture contents of the surface, root and deep soil layers, respectively. The first estimate

is used to create an ensemble of size (N ) by adding pseudo-random noise with known statistics. By

dropping the time notation, each member of state variable Xi is given by

Xi =X̄ + ei ei(i = 1, 2....N) ∼ N(0, P ) (2)

where ei is the random error vector of each member obtained from a multivariate Gaussian

distribution with zero mean and error covariance matrix P, and X̄ is the expectation of the first

estimate X. In the forecast step, the forecast state member Xf
i is determined from the nearest analysis

state member Xa
i according to

Xf
i =M(Xa

i ) + ui ui ∼ N(0, Q) (3)

where M is the model operator and ui is the model error vector of each member, obtained from a

multivariate Gaussian distribution with zero mean and error covariance matrix Q.

In the analysis step, the AMSR-E observation data are perturbed by adding a random observation

error and each member of the analyzed state variable Xa
i is updated as

Xa
i =Xf

i +K((Yo + vi)−H(Xf
i )) vi ∼ N(0, R) (4)

where K is a Kalman gain matrix, H is the observation operator, Yo is the observation, R is the

observation error covariance and vi is a random error vector of the observation with zero mean and

covariance matrix R.



143

CMDAS was developed for use over only sea surfaces to improve the atmospheric moisture fields

by assimilating higher-frequency AMSR-E observations [21]. To apply CMDAS over a land surface,

land surface emissivity derived from the assimilated soil moisture was used as a boundary condition.

To estimate the effects of atmospheric absorption, emission, and scattering on the upwelling radiation

at 89 GHz, the 4-stream fast model [22] was used, and the Shuffled Complex Evolution technique [23]

was adopted as a minimization scheme.

Compared with land data assimilation (50 members), cloud data assimilation is computationally

very expensive because of the several hundred iterations of cloud parameters that are required to

minimize the cost function. Nevertheless, the CALDAS model is enabled on parallel computing

technology to satisfy the increasingly high-performance computing requirements of operational

NWP models.

2.3. Method

1. As shown in Figure 1, the land-atmosphere mesoscale model (ARPS-SiB2) was established

using initial and boundary conditions from NCEP-FNL data.

2. The ARPS model was integrated for a predefined period (10 min) and the calculated

atmospheric forcing data transferred to the SiB2 model.

3. At the beginning of the SiB2 integration, the ensemble (50 members) of soil moisture profiles

was generated. SiB2 was executed independently for each ensemble member of the soil

moisture profile, retaining the same model parameters and atmospheric forcing. At the end

of the SiB2 calculation, the mean values of the updated soil state and fluxes were computed

and fed back to the ARPS model as the lower boundary conditions of the atmospheric model.

Then, the ARPS-SiB2 model was integrated forward in time.

4. At times, when AMSR-E observations were available, the brightness temperatures at 6.9 and

10.65 GHz were perturbed to produce an ensemble of observations with prescribed statistics.

The SiB2-driven ensemble of soil moisture profiles, surface temperature, and canopy

temperature were used to obtain the simulated brightness temperatures using the forward

microwave radiative transfer model. The EnKF calculated the assimilated soil moisture profiles

using simulated and observed brightness temperatures, as shown in Equation (4). In the case

of soil moisture assimilation (no cloud assimilation), the updated soil state and fluxes were fed

back to the ARPS model and the ARPS-SiB2 model was integrated forward in time.

5. In the case of cloud data assimilation, CMDAS was activated as soon as the LDAS completed

the soil moisture assimilations. The control variables (profiles of temperature, specific

humidity, pressure, air density, mixing ratio of cloud water, rain water, hail, snow, and

cloud ice) were obtained from ARPS as an initial state to run the model operator (Lin’s ice

microphysics [24]). The 4-stream fast model calculated the modeled brightness temperatures

for 89 GHz at the satellite level by considering the land surface as the lowest boundary. Land

surface emissivity was calculated using assimilated soil moisture content. The Shuffle Complex

Evolution scheme was used to estimate the assimilated cloud parameters (i.e., cloud liquid
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water, snow, and rain) by minimizing the cost function calculated between the modeled and

observed brightness temperatures. Then, the updated soil state and fluxes were fed back to the

ARPS-SiB2 model.

6. Finally, with the reinitialized land surface and atmospheric conditions, the ARPS-SiB2 model

was integrated forward in time to predict the land and atmospheric evolution until the next

AMSR-E observations were available. The results from the ARPS-Sib2 model were recorded

at 30-min intervals.

3. Experiment Descriptions

The performance of CALDAS was assessed based on three simulations: (1) the ARPS-SiB2

(hereafter ARPS) run, where a one-way nesting procedure employed the land-atmosphere mesoscale

model without any assimilation; (2) the LDAS-A run, in which an ARPS run was accompanied by

sequential land data (soil moisture) assimilation; and (3) the CALDAS run, in which the LDAS-A

run was accompanied by the cloud microphysics data assimilation.

Study Domain and Model Configuration

Two model domains, domain-1 (∼0.23◦ horizontal resolution) and domain-2 (∼0.05◦ horizontal

resolution) were established (Figure 2). Domain-1 was used to downscale the initial and

lateral boundary conditions derived from NCEP-FNL by ARPS to domain-2. Then, ARPS,

LDAS-A , and CALDAS were applied to domain-2 independently. The physical parameterization

options were configured with a 1.5-order turbulent kinetic-energy-based closure scheme for

sub-grid-scale turbulent mixing, latitude-dependent Coriolis parameters, Kain and Fritsch cumulus

parameterization [25] (only for domain-1), and Lin ice microphysics.

Because integrated values of moisture fields were assimilated by CALDAS, the assimilated

values were distributed with predefined profiles. Cloud Liquid Water Content (CLWC) was assumed

to have a parabolic distribution (single-layer cloud) with zero values both above the top and below

the bottom of the cloud layers. The lower and upper bounds of integrated CLWC were set to 0 and

1.5 kg·m−2, respectively.

In this study, the assimilation of the 23-GHz channel for water vapor was not performed because

such assimilation was found to cause errors (i.e., underestimation) in the assimilated water vapor

profile. This underestimation in turn caused assimilated clouds to evaporate quickly to compensate

for the water vapor deficiency (not shown). To avoid this particular problem, air was assumed

saturated only within the cloud layer. However, more accurate information on the water vapor

profiles would improve the development of convective systems in the model and thus, enhance rainfall

prediction. Therefore, we are investigating the use of water vapor profile information within the

CALDAS system, obtained from the AMSU and Atmospheric Infrared Sounder (AIRS).

The distributions of rain and snow followed a skewed profile. They began to form at the

cloud tops, grew to their maximum at the cloud bottoms, and subsequently decreased because of
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evaporation and the breakup of the raindrops or snowflakes. Further information on the model and

the setup can be referenced from [12].

Figure 2. Mesoscale model domains.

4. Results and Discussions

This study investigated the applicability of multi-frequency passive microwave observations for

improving weather forecasting. Simulations were performed during a cloudy period starting from

6 June 2006 to 7 June 2006. The AMSR-E observed full coverage of domain-2 at 0140 UTC on

6 June 2006, which captured the cloud activities over the domain. The results from domain-2 are

discussed in the following sections.

4.1. Distribution of Surface Soil Moisture

To examine the reliability of assimilated land surface emission, model simulations of

soil moisture content were compared with AMSR-E brightness temperatures at 6.9 GHz and

satellite-derived soil moisture products immediately after land data assimilation. Although a

linear relationship cannot be assumed between the surface soil moisture content and brightness

temperatures at 6.9 GHz, visual classification can be performed based on lower brightness

temperatures being related to higher soil moisture content. Figure 3a,b represent the spatial

distributions of simulated surface soil moisture for both the ARPS and the CALDAS models, and

Figure 3c represents the distribution of brightness temperatures at 6.9 GHz. The magnitude of the
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soil moisture content simulated by ARPS (derived from NCEP-FNL) was higher in most of the

model grids (particularly in the south) and produced completely different spatial distributions when

compared with the observed brightness temperatures. Conversely, the distribution of CALDAS soil

moisture content was reasonably comparable with that of brightness temperature at 6.9 GHz, and the

clusters of dry and wet regions observed at 6.9 GHz were well defined in the CALDAS simulation.

Figure 3. Spatial distribution of volumetric surface soil moisture (m3/m3) at 0200 UTC

on 6 June 2006; (a) ARPS; (b) CALDAS; (c) dvanced Microwave Scanning Radiometer

(AMSR)-E brightness temperature (K) observed at 6.9 GHz; (d) Japan Aerospace

Exploration Agency (JAXA) product; and (e) National Aeronautics and Space

Administration (NASA) product, respectively.

Quantitative validation of assimilated soil moisture content was not possible owing to lack of

in situ soil moisture data during this period. Therefore, JAXA and NASA (c-band) soil moisture

products were obtained for independent verification of the assimilated soil moisture information.

As shown in Figure 3d,e, the distribution of CALDAS assimilated soil moisture was comparable

and correlated reasonably well with the products of JAXA (Pearson product-moment correlation

coefficient R = 0.6) and NASA (R = 0.5). It is also worth noting that the absolute values of soil

moisture obtained from the JAXA and NASA products differed greatly, even though they both used

the same satellite information. A previous study [26] on the validation of the JAXA and NASA

satellite-derived soil moisture products reported significant differences between them and that neither
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provided reliable estimates for all the conditions represented by the four watershed sites in the United

States. The significant differences between both products in our domain also indicated that further

coordinated validation studies are necessary to understand and resolve the problems associated with

the retrieval algorithms for African regions. However, as CALDAS performed better than ARPS

and spatially, its soil moisture correlated well with the satellite-derived soil moisture products, the

improved soil moisture content from CALDAS (using the lower frequencies) was used to calculate

land surface emission at higher frequencies to facilitate the integration of cloud microphysics data by

assimilating AMSR-E higher-frequency observations over land surfaces.

4.2. Comparisons of Cloud Condensate With Satellite IR Observations

The quantitative validation of individual or integrated atmospheric moisture variables (i.e., cloud

liquid water, ice, snow, and hail) is still difficult, even at point locations, because of the unavailability

of the necessary data sets. Therefore, to investigate the retrieval capability of the land and atmosphere

coupled data assimilation processes and to evaluate the reliability of the assimilated cloud related

parameters, qualitative comparisons were performed of the spatial distributions between vertically

integrated condensate (summation of liquid and solid phases) and IR satellite data. The results were

investigated ∼1 h after the assimilation (i.e., from 0300 UTC on 6 June 2006).

As shown in the first column of Figure 4, the IR observation reflected very active cloud activity

over the model domain, which was successfully introduced by the assimilation of passive microwave

observations in CALDAS. The assimilated cloud distributions from CALDAS were coherent and

compared well with the observed IR cloud cell distributions. Conversely, the ARPS and LDAS-A

models predicted almost no cloud activity at this time. In addition, hourly evolutions of cloud activity

(each column) showed that the seeding of cloud information using the 89-GHz observation within

the model enhanced the forecasting capability of the model. Thus, the clouds predicted by CALDAS

correlated well with IR observations 6 h after the assimilation, whereas ARPS and LDAS-A showed

much lower cloud activity during this period. The identical results of cloud condensate obtained from

ARPS and LDAS-A during the model forecasting showed that the assimilation of soil moisture did

not improve the cloud simulation, and therefore, the reliable initialization of cloud information is

shown to be crucial for improving weather forecasting during this particular period.
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Figure 5 depicts the diurnal variation in spatial correlations calculated between cloud condensate

simulated by the models and IR observations for 6 June 2006. To eliminate the shift between

the AMSR-E and IR observations, the IR data and the model’s cloud condensate were scaled up

to 0.25◦. Negative values in the spatial correlation indicate mismatches between the IR data and

model simulations of cloud positions, whereas positive values indicate coherence between the IR

observations and model simulations. As shown, the spatial correlations derived from ARPS and

LDAS-A were very similar and showed mostly negative or very low spatial correlations with the

IR observations. However, the CALDAS results showed a rapid increase (+0.49) in the spatial

correlation at 0300 UTC. Two hours after the assimilation, the correlation reached a maximum

of +0.52. This result indicates that CALDAS was reinitialized with improved cloud distributions

(which coincided well with the IR data) and that the assimilation of cloud condensate enhanced

the simulated cloud activities over the model domain. Moreover, the correlation of CALDAS was

larger than ARPS and LDAS-A for about 6 h from the assimilation before decreasing. Therefore,

CALDAS, as a multi-frequency assimilation system, has the potential to improve cloud information

over land surfaces. However, quantitative information on each atmospheric moisture variable and

microphysical property must be investigated in the future, using reliable data sets, to assess the full

capabilities of the CALDAS model.

Figure 5. Hourly variation of spatial correlations calculated from model simulated cloud

top temperatures and IR cloud top temperatures for 6 June 2006.

4.3. Evaluation of Land–Atmosphere Interactions

Improving the representations of land surface conditions and cloud will improve the simulations

of surface (energy and water) budgets and turbulent heat fluxes, which will eventually improve

the representation of land-atmosphere interactions in the model. Radiosonde observations of
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temperature and humidity in the planetary boundary layer, which reflect average turbulent fluxes

over the observation domain, are commonly used to determine the degree to which the land affects

the atmosphere, and vice versa. Radiosonde soundings obtained at Niamey station were used to

investigate the model performance in simulating the land-atmosphere feedback mechanism over the

model domain.

Figure 6a,b compare the observed potential temperature and specific humidity soundings with the

simulated soundings from ARPS, LDAS-A, and CALDAS at 1030 UTC (1130 Local Time (LT)) on

6 June 2006. During this time, the land was heated by the sun and turbulent mixing was created close

to the land surface (from surface to ∼875 hPa), as shown by the observed temperature soundings.

ARPS underestimated the potential temperature sounding (Mean Bias Error (MBE) = −0.52 K, Root

Mean Square Error (RMSE) = 2.00 K) and overestimated the humidity sounding (MBE = 1.85 g/kg,

RMSE = 2.92 g/kg) from the surface to ∼700 hPa. In the case of LDAS-A, the assimilation of

surface soil moisture resulted in marginal improvements in both the temperature (MBE = −0.48 K,

RMSE = 1.94 K) and the humidity (MBE = 1.82 g/kg, RMSE = 2.88 g/kg) profiles, whereas

improvements were seen in CALDAS for the humidity profile (MBE = 1.32 g/kg, RMSE = 2.01 g/kg).

Figure 6. Comparison of observed and model soundings at 1030 UTC on 6 June 2006;

(a) potential temperature (K) and (b) specific humidity (g/kg).

Figure 7 compares the observed soundings with the simulated soundings at 2230 UTC (2330

LT) on the same day. The observed atmospheric conditions at this (night) time, as shown by the

temperature profile, were characterized by statically stable air with neutrally stratified layers. In the

case of the ARPS and LDAS-A models, profiles with higher humidity and lower temperature were

simulated. Further investigation of the model results indicated that these two models produced higher

soil moisture during this period (not shown). However, the observed trend was captured well by

CALDAS and it compared well with the observed soundings of potential temperature (MBE = 0.26

K, RMSE = 1.02 K) and specific humidity (MBE = 1.06 g/kg, RMSE = 1.31 g/kg). The improvement

extended from the surface to the middle atmospheric layers (∼650 hPa) in the CALDAS simulation.

These results show that the synchronized land and atmosphere re-initialization resulted in better
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prediction of the atmospheric sounding (i.e., land-atmosphere interactions) during the forecast period

of the model.

Figure 7. Same as Figure 6 but for 2230 UTC on 6 June 2006; (a) potential temperature

(K) and (b) specific humidity (g/kg).

4.4. Evaluation oF Rainfall Forecast

Forecasting precipitation remains very challenging, and the skill and accuracy of quantitative

forecasts of precipitation are generally low, even over well-instrumented regions. Figure 8 compares

the 6-h (from 03 UTC–09 UTC) accumulated rainfall forecast by ARPS and CALDAS, and estimated

by the TRMM satellite on 6 June 2006. As shown in Figure 8a, the location of the rainfall from ARPS

was completely different from the location where rain was actually observed by TRMM (Figure 8c).

In contrast, the assimilation of the 89-GHz information for cloud data produced rainfall at the same

locations as observed by TRMM. Although the rainfall amounts predicted by CALDAS did not

correspond completely with the TRMM retrievals, the locations of the heavy rainfall were better

predicted by CALDAS. In the case of ARPS, the spatial correlation of rainfall with TRMM was very

low (R = 0.01), whereas in the case of CALDAS, the spatial correlation of rainfall with TRMM was

improved significantly (R = 0.47).

The quantification of model accuracy, errors, and uncertainties is crucial in determining the

reliability of model forecasts, but it is a very challenging task without accurate observations in this

study region. In this research, we utilized satellite retrievals (i.e., soil moisture, cloud distribution,

and rainfall) because of the unavailability of ground-based observations (except radiosonde data).

However, these products are subjected to significant uncertainties due to bias of retrieval algorithms

(e.g., soil moisture measurements obtained from JAXA and NASA differed greatly, even though data

from the same sensor were used for the retrievals), few calibration and verification practices, low

spatial resolutions, and the indirect nature of satellite measurements, which included uncertainties

from various factors (e.g., estimation through cloud top reflectance, thermal radiance, and penetration

depth of microwave signals). Consequently, our present discussions on validating model outputs

with satellite retrievals are based mainly on statistical correlations, because the retrievals capture
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spatial distribution well, even though the absolute values differ among the similar products used.

Conversely, further coordinated efforts are required to organize more intensive and comprehensive

field observations to calibrate and assess the uncertainties of the retrievals, as well as to validate

model outputs quantitatively.

Figure 8. Comparison of 6 hours (from 03UTC to 09UTC) accumulated rainfall (mm)

obtained from (a) ARPS; (b) CALDAS; and (c) TRMM, respectively.

5. Conclusions

This research investigated the applicability of space-borne multi-frequency passive microwave

observations for improving weather forecasting by retrieving soil moisture and cloud information

using two data assimilation systems (i.e., LDAS-A and CALDAS) over a mesoscale domain of

Niger, Africa.

The results showed that the assimilated soil moisture was reasonably comparable with satellite

retrievals obtained from NASA and JAXA, whereas the no-assimilation case produced higher soil

moisture contents and completely different spatial distributions compared with the assimilated case.

However, assimilating soil moisture alone produced only marginal improvements in the model

forecasts of atmospheric profiles (i.e., potential temperature and specific humidity).

The assimilated cloud distributions from CALDAS were coherent and they compared well with

the observed IR cloud cell distributions. The seeding of cloud information from high-frequency

passive microwave radiance enhanced the self-development of simulated cloud activities over the

model domain. Consequently, simulated cloud activities exhibited positive correlations for a period

of about 12 h following the assimilation, whereas the no-assimilation case demonstrated mostly

negative correlations with the IR observations during this period.

The simulated soundings of both potential temperature and specific humidity from CALDAS

showed significant improvements from the surface to the middle atmospheric layers (∼650), which

resulted from improvements in the representations of land and cloud conditions in the model.

Furthermore, the rainfall predicted by CALDAS correlated better with the TRMM retrievals than the

no-cloud assimilation cases. In particular, the locations of the heavy rainfall were better predicted
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by CALDAS, whereas the no-assimilation case produced rainfall in completely different locations

compared with the TRMM rainfall retrievals.

These results are encouraging in terms of producing reliable land and atmospheric states as well

as regional forecasts, especially in poorly gauged or un-gauged regions, because CALDAS requires

only satellite data as input. The consideration of using other satellite information such as the Global

Precipitation Measurement mission, AMSU, and AIRS within the system will be researched in future

studies to improve the model’s robustness and performance further.
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A Life-Size and Near Real-Time Test of Irrigation Scheduling 
with a Sentinel-2 Like Time Series (SPOT4-Take5) in Morocco 

Michel Le Page, Jihad Toumi, Saïd Khabba, Olivier Hagolle, Adrien Tavernier, M. Hakim 
Kharrou, Salah Er-Raki, Mireille Huc, Mohamed Kasbani, Abdelilah El Moutamanni, 
Mohamed Yousfi and Lionel Jarlan 

Abstract: This paper describes the setting and results of a real-time experiment of irrigation 
scheduling by a time series of optical satellite images under real conditions, which was carried out on 
durum wheat in the Haouz plain (Marrakech, Morocco), during the 2012/13 agricultural season. For 
the purpose of this experiment, the irrigation of a reference plot was driven by the farmer according 
to, mainly empirical, irrigation scheduling while test plot irrigations were being managed following 
the FAO-56 method, driven by remote sensing. Images were issued from the SPOT4 (Take5) data 
set, which aimed at delivering image time series at a decametric resolution with less than five-day 
satellite overpass similar to the time series ESA Sentinel-2 satellites will produce in the coming 
years. With a Root Mean Square Error (RMSE) of 0.91mm per day, the comparison between daily 
actual evapotranspiration measured by eddy-covariance and the simulated one is satisfactory, but 
even better at a five-day integration (0.59mm per day). Finally, despite a chaotic beginning of the 
experiment—the experimental plot had not been irrigated to get rid of a slaking crust, which 
prevented good emergence—our plot caught up and yielded almost the same grain crop with 14% 
less irrigation water. This experiment opens up interesting opportunities for operational scheduling 
of flooding irrigation sectors that dominate in the semi-arid Mediterranean area. 

Reprinted from Remote Sens. Cite as: Le Page, M.; Toumi, J.; Khabba, S.; Hagolle, O.; Tavernier, 
A.; Kharrou, M.H.; Er-Raki, S.; Huc, M.; Kasbani, M.; El Moutamanni, A.; Yousfi, M.; Jarlan, L. 
A Life-Size and Near Real-Time Test of Irrigation Scheduling with a Sentinel-2 Like Time Series 
(SPOT4-Take5) in Morocco. Remote Sens. 2014, 6, 11182-11203. 

1. Introduction 

In the southern Mediterranean region, as well as in other arid and semi-arid areas in the world, 
water withdrawals have significantly increased over the last decades [1]. In Africa, 12.5 million 
hectares out of the 210 hectares grown are under fully- or partly-controlled irrigation (about 6% of 
croplands) according to [2]. In the southern Mediterranean region, this relatively small surface 
absorbs 86% of water withdrawals. Localized irrigation, like drip irrigation or micro-sprinkler, 
represents less than 5% of all irrigated areas, while surface and sprinkler irrigations account for 78% 
and 17%, respectively. Although the move to drip irrigation is strongly encouraged through subsidies 
in several countries, flooding and sprinkler will certainly remain the dominant techniques in the 
future, like in Europe [3], but will eventually shift to more sprinkler as pressurized systems appear. 

In the arid and semi-arid areas, where water is one of the most limiting factors to the improvement 
of agricultural production [4], the challenge is to increase agricultural production with limited water 
resources, thus by improving irrigation management for a more efficient and productive use of 



160 
 

 

irrigation water. Furthermore, the southern Mediterranean region is pointed out as a hotspot of 
climate change [5] and the part of water allowed to agriculture will be reduced from 90% in 1995 
down to 70% by 2020 [6]. Also, in Africa, crop development may be sub-optimal because of nitrogen 
stress [7,8]. 

According to [9], irrigation scheduling is the decision-making process of the farmer related to 
“when” to irrigate and “how much” water to apply to a crop but, as Pereira noticed, “research has 
made available a large number of irrigation scheduling tools including procedures to compute crop 
water requirement, to simulate soil water balance, to estimate the impact of water deficits on yields, 
and to simulate the economic returns of irrigation. However, irrigation scheduling is not yet utilized 
by the majority of farmers”. 

A sophisticated, yet easy to use, assessment of crop development and advice for irrigation 
scheduling could, then be an interesting tool both at the farming and district scales, especially in a 
context of surface or sprinkler irrigation and under-optimal crop because of water and/or nitrogen 
stress. Spatial remote sensing imagery can help to fill the gap between research and implementation 
of irrigation scheduling. 

Depending on the wavelength of the sensor acquiring Remote Sensing Imagery, different 
biophysical variables may be derived [10]. Several vegetation indices have been made up (SAVI, 
EVI, etc.) [11], but the Normalized Difference Vegetation Index (NDVI) is considered a common 
denominator amongst several satellite sensors. Other parameters can also be successfully retrieved 
from visible remote sensing like the Leaf Area Index (LAI), the Fraction Cover ( ) and albedo. 

Several reviews of current modeling of Evapotranspiration and Water Balance with Remote 
Sensing imagery are available [12–17]. They agreed to group methods into four main classes of 
increasing complexity: (1) empirical direct methods whereby a relationship links Net Radiation to 
the difference of Air and Surface Temperature; (2) vegetation indices or inference methods, whereby 
a crop coefficient inferred from remote sensing modulates a Reference Evapotranspiration locally 
measured; (3) the Residual Method of Surface Energy Balance combines empirical relationships to 
physical models in order to assess the energy budget components, minus the latent Heat Flux which is 
determined as the residue of the other fluxes; and (4) the mechanistic approach based on so called Soil 
Vegetation Atmosphere Transfer models, whereby all the components of the energy and water budgets 
are computed. 

In this experiment, the second method is used with the FAO-56 dual-crop method under water 
stress conditions described in [18] and its extension [19]. The crop coefficients and fraction covers 
are inferred from a high temporal and spatial resolution data set acquired and processed in near 
real-time (a couple of days). To achieve this, the experiment relied on the SPOT4 (Take5)  
experiment [20] which aimed to provide a Sentinel-2 like data set from February to June 2013. In fact, 
the two Sentinel-2 satellites will provide high-resolution images of all land areas, every fifth day. This 
experiment also benefited from the low cloud cover observed in semi-arid areas, which enabled getting a 
high frequency of cloud-free acquisitions. 

This experiment was not carried out in a fully-controlled experimental environment, but on the 
contrary, on a plot located within an irrigation scheme running as usual. As the scheme distributes 
irrigation water arranged by rotational turns, the main constraint is then to anticipate the irrigation 
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event at least three days in advance. Such a system is also subject to various contingencies like 
element ruptures for example. Hopefully, the only contingency during the experiment was a three-day 
closure of all irrigation events for accounting and recovery of payments. To resolve the timing 
constraints, the data were gathered in this way: meteorological data from our local station were sent by 
telemetry, irrigation data from the Agricultural Office were communicated through phone calls, and 
images through the Internet. 

This paper is organized as follows. In Section 2, we provide a description of the study area, the  
in-situ measurements and satellite imagery, and the specialized FAO-56 method. Section 3 presents 
the results of irrigation scheduling by satellite imagery, which was carried out on the durum wheat. 
Section 4 discusses the strengths and weaknesses of the proposed method, and suggests  
some perspectives. 

2. Data and Methods Used 

2.1. Study Site and Experimental Plots 

The Haouz plain is a sedimentary plain bordered to the North by the Jbilet Mountains and to the 
South by the High-Atlas Mountains. The plain is crossed from South to North by several wadis, 
which are the tributaries of two large collectors, the Tensift and Oum er Rbia, which gave their name 
to their respective watershed. 

The plain climate is semi-arid, with average annual rainfall of 250 mm concentrated between 
November and April, whilst evaporative demand according to the reference evapotranspiration (ET0) 
is about 1600 mm per year [21]. 

The agricultural sector is managed by the Office Régional de Mise en valeur Agricole du Haouz, 
or ORMVAH. About two thirds of the 473,000 ha of croplands are irrigated, and half of them 
(144,600 ha) are irrigated from dams. 

The experimental plots are located in the R3 irrigation scheme (Figure 1), which encompasses  
about 3000 ha of irrigated land, composed of about 745 individual fields. R3 scheme is supplied with 
water from the Hassan dam through the Rocade main canal, which also provides other irrigated areas 
and the drinking water of Marrakech City. Irrigation water is supplied to the fields via open primary, 
secondary and tertiary concrete canals that are well-maintained. Neyrpic modules à 
masque—undershot gate devices—provide control of flow rates by ±5% [22]. According to [22], the 
allocation of water is determined in three steps. Initially, the seasonal distribution of water is 
negotiated between the major water stakeholders depending on the availability of water in reservoirs. 
At the beginning of the irrigation season, the Water User Associations (WUA) are informed about 
the seasonal water allocated to their sector. A second negotiation phase between WUAs and 
ORMVAH leads to the monthly and seasonal requirements according to the expected cropping 
patterns. Thus, the number of irrigation cycles and water depths is fixed in proportion to farm size. 
During the season, the WUAs adjust the irrigation scheduling by choosing the start date of each 
irrigation cycle, usually based on simple observations of weather or by visual assessment of crop and 
soil water status. 
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Figure 1. The picture shows the area covered with the SPOT4-Take5 images 
(background is the first image of the Time Series taken on 31 January 2013), and the 
location of R3 scheme (green), 40 km east of Marrakech, Morocco. The scheme is fed by the 
Rocade Canal (dark blue). 

 

The dominant soil-type is xerosol, developed on colluvial materials of the High Atlas mountains, 
resulting in homogeneous deep soils (generally more than 1 m), with fine clay to loamy texture. The 
main crops are cereals (mostly wheat) adding up to 80% of the area on average, the remaining area 
being planted in olive trees or covered by fallows and villages [22]. 

Two plots were selected at the proximity of a primary canal head (Figure 2) in order not to disrupt 
the scheduling of the irrigation scheme and to ensure water availability to the experiment. The first 
plot, hereafter “experimental”, covers an area of 3.7 hectares and irrigation was driven by our model.  
The second plot (3.3 hectares) is irrigated “as usual” by the farmer, and it is hereafter referred to as 
“reference”. The four soil samplings conducted at 20 cm and 40 cm depth showed a texture of 36% 
clay and 20% sand. The pedotransfer function [23] is taken from [24] to obtain a field capacity of 
0.32 m3/m3 and a wilting point of 0.18 m3/m3. 
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Figure 2. Setup at the south of the scheme: The experimental plot (yellow) is located 
north of the reference plot (pink) at a distance of about 1km from the main canal. A flux 
tower (green circle) was installed at the center of each plot (E stands for “experimental”, 
and R, for “Reference”). The meteorological station (green square) is located 2 km west 
of the plots. 

 

2.2. Technical Itinerary 

After a proper soil preparation (deep pre-plowing in the summer and soil refinement), durum 
wheat (Saragola) was sown on 24 December 2012, at a rate of 200 kg/ha. We will further refer to the 
dates following sowing as DaS (Date after Sowing). Fertilizer was applied at sowing, consisting of 
200 kg/ha of Diammonium Phosphate (DAP), and then at the beginning of the grain-filling phase on 
DaS 106 with 100 kg/ha of Ammonitrate. Weeds were controlled with specific chemical applications 
on DaS 51 and 108. Harvest took place on DaS 171 (12 June 2013). 

Both plots are surface-irrigated. The irrigation technique is Border Irrigation [25]. This technique 
is widely used in the so-called Modern Irrigation areas of the Haouz plain where the plots have been 
leveled. A quaternary channel dug by the farmer orthogonally to the distribution canal allows 
diverting water flow to each strip of land within the plot. Water then travels down the slope while 
fully filling the soil, thus preventing the control of applied water for each irrigation event. The total 
length of each border is equal to the width of the plot (about 100 meters) and the width of the border 
is about 8 m. It takes about half an hour to irrigate one border with two operators, and about 5 to 6 h 
per hectare. Nevertheless, as described in [25], this technique may not ensure an adequate filling of 
the root zone, in particular because of poor land grading, wrong stream size, or stopping the inflow at 
the wrong time. Also according to [26], in the study area, deep percolation was evaluated between 
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26% and 31% of water supplied (rainfall and irrigation), depending on the stage of  
crop development. 

Because of the clay soil texture, a slaking crust occurs when soil moisture content is below field 
capacity. In our case, the two plots were irrigated immediately after sowing to ensure germination. 
Since there was no rain after this period, a second irrigation was necessary after a few days in order to 
ease wheat emergence (which was realized for the farmer plot). Unfortunately, due to a 
misunderstanding with the farmer, the test plot did not receive this second irrigation on time. 

Also, previous experiments [7,24] on winter wheat on this irrigation scheme had already shown 
that rooting depth does not exceed 60 to 80 centimeters with this irrigation technique. 

2.3. The Time Series of Remote Sensing Images 

This experiment was mainly driven by the use Sentinel-2 like data thanks to the SPOT4 (Take5) 
experiment [20]. The SPOT4 (Take5) experiment consisted in lowering the altitude of SPOT4 orbit 
by a few kilometers, putting it on a five-day repeat cycle orbit, in order to be able to observe a limited 
number of sites every fifth day under constant viewing angles. Therefore, the achieved repetitiveness 
is the same as the one provided by Sentinel-2 mission with two satellites, and the experiment was 
aimed at helping users prepare their methods and applications to get ready for Sentinel-2 data 
availability in 2015. 

Finally, 45 sites were chosen, among them the Moroccan site in which resides the Haouz plain  
(Figure 2), and 28 successive images were acquired every fifth day in 2013, from 31 January to 15 
June. Data were processed in near real-time to level 2A using the MultiSensor Atmospheric 
Correction and Cloud Screening software (MACCS) [27,28]. Level 2A data is ortho-rectified images 
expressed in surface reflectance after atmospheric correction, provided with a cloud/cloud  
shadow mask. 

In total, 18 scenes (64%) were cloud-free for our two plots. As displayed on Figure 3, there were 
six gaps: two gaps with one missing image (10 days) and four gaps with two missing images  
(15 days). As the Take5 experiment started one month after sowing, and the success of orbit altitude 
change was not assured, a SPOT5 programming was also performed, with one image every fifteenth 
days from December to April. Like all other satellites of the SPOT family, the SPOT5 has the capability 
to make off-track pointing. Thus the major time interval between two images was only 25 days. SPOT5 
atmospheric corrections were carried out with SMAC [29] using the data of the Saada Photometer, 50 
km west of the plots. 

Figure 3. Time series of satellite images Spot4-Take5, Spot5 and Landsat8 during the 
2012/13 season. Landsat8 scenes were not used during the experiment and are only 
indicated as reference. The gaps in the SPOT4 series are only due to cloud cover. 
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The NDVI (Equation (1)) based on red (R) and infra-red (NIR) reflectances was finally calculated 
for each image and averaged for each plot, eliminating edge pixels. This choice is important. First, 
the border irrigation technique does not allow modifying the applied quantity of irrigation, resulting 
in the fact that the plot level is the most adequate scale of management for irrigation. Second, 
although it is very likely that a variability of soil and irrigation exists within the plot, we believe that 
we cannot afford such accuracy on an operational level, so the water budget may be inaccurate at the 
pixel level. Third, the algorithm is simplified and computing time is reduced. 

 (1)

2.4. The FAO-56 Method Driven with Remotely Sensed NDVI 

The FAO-56 method [18,19] is used to estimate crop water requirements based on the concepts of 
the reference evapotranspiration ET0 (defining atmospheric demand), and crop coefficients 
introduced to regulate demand with regards to the specific response of particular crops. The 
definition of ET0 is associated with assumptions on key biophysical variables of the system: leaf 
LAI, surface resistance, albedo, canopy height. Although several alternative methods may be used to 
approximate ET0, the recommended method is the Penman-Monteith equation [30]. 

In optimal agronomical conditions (no disease, water, salt or nutrient stress), the crop 
evapotranspiration is called . The crop coefficient  is the intermediary between ET0 and ETc; 
it takes into account the physical and physiological differences between reference and studied crops. 

 is the evapotranspiration under non-standard conditions Equation (2). In our study, we only 
deal with water stress introducing the stress coefficient  varying from 0 to 1: 

 (2)

The “Dual Crop Coefficient” approach includes a soil water budget module. This is a procedure to 
predict the impact of specific wetting events that is better suited for irrigation management at the 
scale. The crop coefficient is split into a basal crop coefficient ( ) for crop transpiration and a 
coefficient  for evaporation as in Equation (3) [18]. 

 (3)

In this main equation,  is explicitly separated while the reduction coefficient of evaporation 
 has been previously introduced into  Equation (4): 

 (4)

where  reflects the natural constraints of available energy. It is the upper limit of 
evapotranspiration for every cropped surface and ranges from 1.05 to 1.3 depending on wind, 
humidity and crop height. In the spatialized version of the model, a single steady value of 1.15 is 
used. The fraction of soil that is both exposed and wetted ( ) is equal to 1 for bare soil, and 
equals to the soil not covered by vegetation (1  ) as crop develops. 

The review from [31] shows that early works like [32] have found that NDVI was highly 
correlated with LAI and , and that crop coefficient  derived from NDVI were independent of 
time parameters. The study of [33] showed that the basal crop coefficient  can also be derived 
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from a linear relationship of vegetation indices, but pointed out that NDVI saturates at a LAI of 
about 3.0. The SAVI index [34] that saturates at higher LAI (about 5.0) and that is also less 
sensitive to changes in soil brightness and moisture is then more appropriate. The linear 
relationships between  and NDVI have shown to be very reliable. For example [35] and [36] 
found r2 > 0.9. 

In relatively recent years, progresses have been made on the estimation of the temporal 
evolution of  from remote sensing measurements of vegetation indices (VIs). Some authors 
have in fact suggested that relationships between crop coefficient and VIs are linear [32], but others 
have found non-linear relationships [37]. These relationships have been studied for several crops 
and recently for potato [38], cotton [39], sugar beet [40], maize [41], grapes [42,43] and citrus 
orchard [44]. 

For the winter wheat grown in the Haouz plain, we used the relationships established by [24] for 
NDVI-  and [21] for NDVI- . They determined the NDVI- empirically using 
eddy-covariance and ET0 measurements and only keeping the data of unstressed and fully covered 
days (Equation (5)). The NDVI-  relationship was empirically established between fraction cover 
measured by hemispherical photography and NDVI retrieved with a portable radiometer  
(Equation (6)). Note that, for the latter, the  parameter has been replaced with a static 
value of 0.14. Fraction cover has been maintained to its higher value until harvest time; 

(5)

 (6)

A bucket-type water budget is calculated, where a surface bucket is the water source for 
evaporation, another one for transpiration of the rooting zone and a deeper one for deep infiltration 
with a simple parameterization to simulate eventual capillary rises. The depth of the evaporative 
layer is set to 11 cm, with a Readily Evaporable Water threshold set to 10 mm. The second layer 
varies from 11 to 60 cm at maximum rooting depth in linear relationship to the fraction cover. The 
total column is set to 150 cm, so that the depth of the third layer is computable by subtracting the 
second layer. 

The Total Water Storage Capacity (TAW) of each layer is the one between field capacity and 
wilting point (0.32 m3/m3 and 0.18 m3/m3 respectively as mentioned earlier). For each layer, a 
threshold separates the readily accessible water (RAW) from the one accessed with difficulty [18]. 
A threshold of 0.55 for winter wheat is set after Table 22 of FAO-56. After reaching this threshold, 
the layer in question begins to reduce its water losses to ET. Reduction coefficients  and  
are calculated with the same formalism for the water balance of the root layer and upper layer, 
respectively: If there is less depletion (Di) than the threshold, there is no reduction and then  

 = 1. If the depletion exceeds the threshold, the stress coefficient is computed as the ratio 
between available water for the process and the less accessible water (Equation (7)). 

 (7)

The rooting depth (Zr) is calculated at each time step with a linear relationship to  (Equation (8)) 
where the Zrmax and Zrmin are the maximum and minimum rooting depth and  is the 



167 
 

 

maximum fraction cover of the crop. According to the previous studies mentioned above, Zrmin 
and Zrmax were set to 0.15 and 0.6 meter respectively 

 (8)

Depletion of each layer was updated at the end of each day by subtracting rainfall and irrigation, 
and adding computed  and eventual deep percolation. Capillary rise was set to null for this 
experiment, and as the plots have been graded with a gentle slope for border irrigation, we assumed 
that runoff to and from the plot was negligible. 

As no significant rainfall had occurred during the previous months, the initial soil water content 
was set to 15%. The model also implements the partition of wetted area by irrigation or rainfall as 
described in [19], for which the fraction wet was set to 100%. 

2.5. Meteorological Data and In-Situ Measurements 

Although ORMVAH is well-equipped with four agro-meteorological stations over the Haouz 
plain, it was decided to put a full meteorological station equipped with telemetry for two reasons: 
ORMVAH stations are located more than 40 km away from the study site and meteorological data 
must be available in near real-time. Conventional climatic data were collected over a site located  
2 km away from the experimental plots (square in Figure 2). A 2-meter tower was equipped to 
measure the air temperature and relative humidity using CS215 from Campbell Sc.; wind speed and 
direction using a Young 5103 anemometer; incoming solar radiation using an Apogee CS300, and 
finally rainfall was measured using a tipping bucket automatic rain gauge (ARG100, Campbell 
Scientific Inc., North Logan, UT, USA). The measured values were aggregated to a 30 min time 
interval, and then transmitted with a GPRS modem connected from the CR200 data logger. 

The station was installed over an alfalfa crop maintained in the range 10–15 cm height during the 
whole experiment. It was considered appropriate to calculate Reference Evapotranspiration 
following the Penman-Monteith equation. ET0 appeared to be consistent with the surrounding 
stations, corroborating that the surface resistance of this crop was compatible with the reference 
grass described in the FAO-56 method. A total of 99 mm of rain and 604 mm of ET0 were recorded 
during the cropping season (Figure 4). Actual applied irrigation inputs of both plots were provided by 
ORMVAH, based on the opening time of the irrigation canals. As stated earlier, the flow of water 
into the plot is well controlled thus the irrigation water depth can easily be inferred. 

Two towers were installed in the center of each plot at a height of 2 m (green circle in Figure 2). 
They provided the elements to calculate the four principal components of energy balance. An Eddy 
covariance instrument provided high-frequency (20 Hz) measurements of three-dimensional air 
velocity and temperature (CSAT3, Campbell Scientific Inc.); and synchronous water vapor 
concentration measured with high-speed hygrometers (KH2O, Campbell Scientific Inc.). Soil fluxes 
were measured with heat flux plates (HFT3-L, Campbell Scientific Inc.), and finally the four net 
radiation components were measured with a radiometer (CNR4, Kipp & Zonen, Delft, Netherlands). 
Data was averaged at a 30 min time interval and checked for energy balance closure with the Bowen 
ratio method with an r2 of 0.85 (slope of 1.1) for the experimental plot and 0.92 (slope of 1.06) for the 



168 
 

 

reference plot. Although not being applied here, it may be noted that other energy balance closure 
techniques exist. In particular, the study of [45] showed that differences of +10% to 20% of yearly 
cumulated ET compared to the Bowen Ratio technique may appear. Actual evapotranspiration 
measured with this system will be further referred to as . 

Figure 4. Time evolution of Rainfall and Reference Evapotranspiration (ET0) during the 
experimental setup. 

 

At harvest time, above-ground biomass and grain yield measurements were carried out by 
counting the total number of straw bales (dry biomass) and the number of grain sacks. Mean plot 
yields were finally computed by multiplying those accounts by the average weight of sacks and bales 
obtained through weight sampling. 

2.6. Kcb Extrapolation 

Changes in NDVI over a five-day period (return period proposed by SPOT 4 (Take 5) or Sentinel 2) 
are rather small. However, cloud cover increases this interval, and an extrapolation between the latest 
clear satellite image and the current day is required. Tables 11 and 17 from [18] were used to set up 
future inflexion points, choosing the California Desert Winter Wheat crop with a cycle length of  
160 days. For the FAO-56 approach, the inflexion points are obtained combining the duration of 
three development stages (initial = 20 days, development = 50 days, mid-season = 60 days and late  
season = 30 days, for the selected crop), and the basal crop coefficients at initial, mid and late season 
(0.15, 1.1, 0.25 for the selected crop). The FAO-56 inflexion points were combined with the existing 
points obtained from remote sensing to calculate a full season by linear interpolation. 

2.7. Climatic Extrapolation or Forecast 

A forecast of climatic data is needed to help the irrigation decision-making process. The ASP 
weather model, which is a hybrid-mass coordinate primitive equation hydrostatic model with 
equations expressed in flux form [46] has been running over the Moroccan domain at 10km 
resolution during the whole experiment. The rainfall output of the model was scrutinized and 
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compared to freely available model output from the Web. Smallest rain forecasts were simply 
ignored. Nevertheless, ET0 forecasts were extracted from climatology because of technical 
difficulties. We will discuss the importance of these data in the last part of this paper. 

2.8. Irrigation Decision-Making Process 

As mentioned above, the irrigation scheduling of the reference and the experimental plots were 
managed separately. The reference plot was managed “as usual” by the farmer, meaning that he had 
to take not only into account this plot, but also the hundreds of hectares he is growing, and to manage  
its workforce. 

The experimental plot was managed according the FAO-56 method guided by remote sensing 
NDVI, but taking into account that network management and labor mobilization generally takes a 
minimum of three days. The triggering of irrigation may thus have been underoptimal in a modeling 
point of view, as the RAW may not have been fully depleted. It was also decided to let the farmer 
irrigate by himself the experimental plot before vegetation emergence was noticeable on satellite 
images (DaS 27 with a NDVI of 0.17), and for the last irrigation. 

The irrigation water depths actually applied are dictated by the irrigation technique. They are 
between 50 and 60 mm. 

3. Results 

3.1. NDVI and Basal Crop Coefficient 

The time series of NDVI for both plots is shown on Figure 5. The first three dates are calculated 
from SPOT5, the remaining dates are obtained from SPOT4 (Take5). The reference plot shows a 
lower NDVI during the growth period. The two plots reach the same level of NDVI around DaS 100  
(23 March). The jumps in both curves may be related either to soil moisture conditions as wetting events 
are likely to impact the soil albedo [47], either to a possible increase of aerosols thickness in particular on 
hot and windy days. 

On Figure 6 showing results of the linear conversion from NDVI to Kcb, it can be seen that Kcb is 
limited to Kcmax (1.15), and that the extrapolator was quite efficient. The reception of new images 
could correct the Kcb trajectory, especially on DaS 63 when the Kcb curve began inflecting, and at 
DaS 133 at the early start of senescence. 

3.2. ET Estimates 

Figure 7 shows the comparison between  and  for the experimental plot. With 
RMSE’s of 0.91 mm per day and 0.95 mm per day, and  values of 0.75 and 0.67 for the 
experimental and reference plots, respectively, the comparison shows a fair yet not excellent fit for 
both fields. These error ranges are quite comparable to previous studies [21,24,48]. The score is 
particularly low at the beginning of the season, in particular because of lower evaporation during 
DaS 23–29 and 32–49 (Figure 7). A post-experiment calibration procedure showed that the use of the 
capillary rise equations would have improved the overall RMSE by 0.09 mm per day (0.28 mm per 
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day for the first 40 days), and that a full calibration of  and  would have helped gain 
an extra 0.07 mm per day. It can also be remembered that Eddy-covariance measurements are prone 
to a certain amount of error [49]. In addition, an error analysis at a five-day time interval shows 
RMSE of 0.59 mm per day and  of 0.9 (0.46 and 0.91 with corrected diffusion) for the 
experimental plot. The gain in RMSE obtained by this temporal integration shows that if the 
technique does not perform very well on a daily time step, the results are improved over a longer 
period of time. With regards to irrigation, this information may be interpreted in this way: during the 
colder period of growth (December–February), average ET was 2.4 mm per day,  
the irrigation scheduling may be shifted up to one day per every five days, while during the warmer 
period (average ET of 4.8 mm per day), it goes down to one day per every 10 days. It suggests that 
the estimates of evapotranspiration are enough accurate for the purpose of irrigation scheduling. 

Figure 5. Evolution of NDVI for the two plots: Reference (Ref) and Experimental (Exp). 
Note that the first three points come from SPOT5 and others from SPOT4. The DaS of 
each input image has been labeled. 

 

3.3. Irrigation Decisions 

As shown on Figures 8 and 9, eleven irrigations events (640.8 mm) were done on the reference 
and nine on the experimental plot (562.9 mm). They were scheduled fairly differently. As explained 
earlier, the irrigation decisions were left to the farmer before noticing the emergence of vegetation on 
NDVI images for both plots. 

The farmer decided its first irrigation on DaS 17 with 92 mm (note that a rainfall of 16mm was 
registered this same day). It is the highest amount in single irrigation during the whole season. 
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Figure 6. Kcb derived from NDVI (dashed line) and evolution of extrapolations as new 
images are arriving (dark to light gray) for the experimental plot. Each time a new image 
is received (dot and DaS small label), the Kcb trajectory is corrected. The three inflexion 
points extracted from the FAO-56 tables are indicated by a star and a bold label. 

 

Figure 7. Comparison between the daily values of estimated  by the FAO-56 
model and the measured one  by the Eddy-covariance system for the 
experimental plot. Error indicators are MSE (Mean Square Error), RMSE (Root Mean 
Square Error), MBE (Mean Bias Error), MAE (Mean Absolute Error) and MAPE (Mean 
Absolute Percentage Error). 
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Figure 8. Forcing (ET0, Rainfall and Irrigation) of the Water Balance and comparison of 
measured Evapotranspiration (ET_EC) and Calculated Evapotranspiration (ETadj) for 
the experimental plot. 

 

Figure 9. Comparison of irrigation events between the two plots. Time intervals between 
events are indicated in the same figure. NDVI is for the experimental plot. 

 

The farmer decided a second irrigation on DaS 22 and before plant emergence to prevent the 
appearance of soil crusting. As our water balance model is only efficient after the emergence of the 
crop, both plots should have been watered the same way. But, although there was no plant 
emergence, misunderstandings with the farmer led him not to irrigate the experimental plot 
simultaneously with the reference one. Unfortunately, the soil crust actually appeared on the 
experimental plot and imperiled the wheat development for the rest of the season (see discussion 
below), by limiting the number of tiller. 

The two following irrigations were done at the same time on DaS 34 and 52. 
The next irrigation schedule was significantly different. Indeed, the farmer decided to irrigate on  

DaS 71, while the experimental plot had been irrigated a week later (DaS 79). It may be noticed that 
the changing rainfall forecast had moved the date of this irrigation from DaS 75 to 79, and that 
subsequent measurement of rain and ET0 showed that this irrigation could have been delayed  
until DaS 81. 
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The farmer did irrigate on DaS 87 as well. The next irrigation was carried out on the same day  
(DaS 94 and 95). For the next irrigation, the farmer waited three more days than we did. It is possible 
that the farmer had overestimated the amount of rain on DaS 101–103. 

The third remaining irrigation events were quite similar in terms of quantity and timing of each 
plot, but with a three-day interval. The decision to make the last irrigation for both plots was left to 
the farmer. 

3.4. Final Budget and Yields 

At the end of the experiment, the final irrigation budget of the experimental plot (563 m3/ha) is 
lower than the reference plot (640.8 m3/ha). The biomass of the reference plot is 24% higher than the 
experimental plot and the grain yield is slightly higher (+6% for the reference plot). The almost 14% 
of extra water used on the reference plot is due to the fact that the farmer used the remaining of 
irrigation of DaS34 to irrigate its plot and that he did an unnecessary irrigation during the period of 
Das 71–94. 

Table 1. Actual irrigation events of both plots and comparison of irrigation events three 
to eight to the water balance. 

Reference Experimental 

# Dates (DaS) 
Quantity  

(mm) 
# Dates (DaS) 

Quantity 

(mm) 

Water 

Balance 

Absolute  

Difference  

(WB-Exp) 

Percentage 

(WB-Exp) 

1 9 January (17) 92 1 7 January (14) 91.8 - - - 

2 14 January (22) 62.1 - - - - - - 

3 26 January (34) 30 2 26 January (34) 64.8 - - - 

4 13 February (52) 64.8 3 14 February (53) 56 38 18 32 

5 4 March (71) 46 4 12 March (79) 48.6 56 7.4 15 

6 20 March (87) 48.6 - - - - - - 

7 27 March (94) 48.6 5 28 March (95) 48.6 49 -0.4 -1 

8 13 April (111) 56 6 10 April (108) 56 53 3 5 

9 22 April (120) 70.2 7 19 April (117) 72.9 47 25.9 36 

10 29 April (127) 55 8 27 April (125) 54 48.9 5.1 9 

11 7 May (134) 67.5 9 10 May (137) 70.2 - - - 

Total Irrigation 640.8 562.9 
  

Total with Rainfall 739.8 661.9 

Table 1 shows two things: first, a comparison of quantities applied to both plots and second,  
a comparison of actually applied quantities for the experimental plot to the quantities recommended 
by the water balance model (the water needed to fill-up the two upper buckets referring to the surface 
and the root zones respectively), for irrigation events three to eight. We chose to compare only those 
events because during the initial phase (no vegetation cover), the irrigation scheduling was handled 
by the farmer and the decision of the last irrigation was also left to the farmer. The comparison to the 
water budget shows a surplus of 13% for irrigation events three to eight, so the difference is not too 
large. Nevertheless, the amount of water applied to the first two irrigations is much more important 
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than the budget proposed water. This difference is directly related to the irrigation technique itself,  
which requires a minimum amount of water to irrigate the entire field, especially on dry and plowed 
soils at this time of the year. 

4. Discussion and Perspective 

4.1. Strengths and Weaknesses 

A time series of optical high resolution images, very close to what the Sentinel-2 product will look 
like, was used to compute a daily water balance in near real-time for a wheat field in Morocco, and 
irrigation was scheduled according to the model prediction. Calculations were performed at the plot 
level because it is not possible to irrigate a subpart of the plot and also to cut calculation time. A good 
knowledge of local parameters (soil and rooting depths), realistic input values of ET0 and the wetting 
events and a dense time series of high-resolution remote sensing images allow the FAO-56 model to 
perform properly. By contrast, with Landsat 8 (launched on 11 February 2013 with the first image of 
our area available on 19 April and a return period of 16 days), a gap of 47 days (two missing images 
in a row) occurred between the 5 May and 22 June images (Figure 3). In our case, the high frequency 
of SPOT4 (Take5) allowed a consistent, high repetitiveness data set. 

This simple model provides good advice in the irrigation decision-making process, yet several 
aspects may affect the water balance. Namely, (a) the farmer’s expertise remains crucial; (b) 
calibration should be adjustable; (c) extrapolation is important to preclude satellite image gaps; (d) 
the meteorological forecasting especially for rainfall may also be important, but mainly to make the 
decision of postponing an irrigation event and (e) a time window for irrigation should be provided to  
the farmer: 

(a) The FAO-56 method is dedicated to the estimation of evapotranspiration and to assist 
irrigation scheduling. Anything that falls out of this area must be addressed by the farmer’s 
expertise. In our case, the appearance of a slaking crust greatly disadvantaged the tillering of 
the experimental plot, and the crop could never recover. This is the main reason for the much 
lower biomass obtained on the experimental plot. By contrast, the reference crop may have 
suffered some stress hampering grain filling, leading to a similar amount of grain yield in 
both plots. In this case, the water budget guided by remote sensing was more efficient than 
the farmer’s management. 

(b) Although predefined calibrations may be assigned for typical crops and soil parameters,  
they should be adjustable by the farmer, so that the model could reflect local measurements  
(e.g., Watermarks) or his know-how of irrigation scheduling (delaying or advancing  
irrigation triggering). 

(c) The typical description of crops through crop coefficients includes four inflexion points; 
hence, it can be assumed that four perfectly-timed images would be sufficient to describe the 
temporal evolution of the crop. However, at a regional level, the spatial variation of sowing 
dates is important. It increases this theoretical number to a daily image. In addition, cloud 
coverage forces the need for extrapolation. 
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(d) Although it was not demonstrated here, the prevailing forecast data is the rainfall amount.  
An expected rainfall of 20 mm may boost the root layer for the next few days. But, if the 
actual rainfall is much lower than the forecast, an irrigation decision must be made rapidly, 
and still a couple days ahead of the irrigation event because of the technical constraint at the 
scheme scale. In semi-arid areas, the irrigation decision system should take into account the 
uncertainty of rainfall forecast, including ignoring the forecasts of small rainfall. 

(e) In the introduction, we said that an irrigation scheme may suffer contingencies, and it is also clear 
that a farmer has to deal with his equipment and workforce availability. On the other hand, the 
FAO-56 model suggests a single best date of irrigation. To overcome the problem, it would be 
nice to provide an irrigation window to the farmer, which would also take into account the 
preceding remark. 

Interestingly enough, during tillering and stem extension the NDVI of the experimental plot  
was slightly higher than the reference plot, when actually there were about 20% fewer stems on 
average. This may be explained by the fact that at higher density of leaves, higher shade occurs 
within the canopy, thus radiation interception is higher [50]. In fact, due to the limited penetration of 
the visible signal in the canopy, the three dimensional complexity of a crop canopy can hardly be 
seen by optical remote sensing imagery; hence NDVI remains a broad indicator of crop 
development, in particular for biomass. 

The soils of the Haouz plain are poor and the climate is semi-arid. The yield depends on irrigation, 
but above all on fertilization. The water productivity indices in the region are generally low (1.63 
m3/kg for 2002/03 and 1.49 m3/kg for 2003/04 [7]. In our study, water productivity is 1.34 m3/kg 
against 1.52 m3/kg for the reference plot (calculated only on irrigation water), which represents a 
gain of 0.18 m3/kg. This conclusion goes into the way of increasing water productivity which is one 
of the main concerns of the National Agricultural Plan of Morocco [51]. 

4.2. Conclusions and Perspective 

This experiment demonstrated how remote sensing time series could be used in an almost 
operational way for irrigation scheduling at the plot scale in a semi-arid environment. In this 
particular case, this irrigation advice showed to be a possible way to improve performance while 
saving on water, even without changing the irrigation technique. High-resolution and high-frequency 
satellite optical images, like the ones that will be available with Sentinel-2, may be of great help for 
irrigation scheduling at the plot scale. The simulated Sentinel-2 data set provided by the SPOT4 
(Take5) experiment proved to be perfectly fitted for this experiment.  

Additionally to high temporal and spatial resolution reflectance images, a better assessment of 
surface soil moisture and root soil moisture can be achieved through assimilation techniques of high 
temporal and spatial resolution microwave data on the one hand, and thermal data on the other  
hand [52]. Active microwave in the L and C bands have proven to be particularly interesting for the 
estimation of soil moisture in the first centimeters [53] for bare soils. With a revisit time of one to 
three days and a ground resolution of 5 × 20 m, Sentinel-1 data would be a good candidate to help a 
reflectance-based crop coefficient approach in the early part of the season. This real-life experiment 
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was carried out over a single plot. Other works show the potentiality of the approach for a whole 
irrigated sector, introducing a new Irrigation Priority Index [54] and an optimization scheme [55]. 
But the change of scale is not at all straightforward. Initialization will be difficult, in particular 
because dealing with a large number of plots would imply to automate several steps like crop 
detection and its corresponding Kcb profile for interpolation. At running time, actual irrigations, 
which is crucial input appears to be extremely difficult to collect. Again, SAR data with high revisit 
time may be a solution to retrieve irrigation dates and then force a refill of the two upper layers of the 
water budget. Finally, since the data of land cover, soil type and irrigation are the main limitations to 
operational service, we are currently developing a Web Service called SAT-IRR whereby a 
stripped-down interface allows the user to set up their plot, their crop and introduce their own 
irrigations. The server is in charge of gathering the remaining weather and satellite data from remote 
sources, and to compute a daily water balance with the herein described technique. 
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Monitoring of Irrigation Schemes by Remote Sensing: 
Phenology versus Retrieval of Biophysical Variables 

Nadia Akdim, Silvia Maria Alfieri, Adnane Habib, Abdeloihab Choukri, Elijah Cheruiyot, 
Kamal Labbassiand Massimo Menenti 

Abstract: The appraisal of crop water requirements (CWR) is crucial for the management of water 
resources, especially in arid and semi-arid regions where irrigation represents the largest consumer 
of water, such as the Doukkala area, western Morocco. Simple and (semi) empirical approaches 
have been applied to estimate CWR: the first one is called Kc-NDVI method, based on the 
correlation between the Normalized Difference Vegetation Index (NDVI) and the crop coefficient 
(Kc); the second one is the analytical approach based on the direct application of the  
Penman-Monteith equation with reflectance-based estimates of canopy biophysical variables, such 
as surface albedo (r), leaf area index (LAI) and crop height (hc). A time series of high spatial 
resolution RapidEye (REIS), SPOT4 (HRVIR1) and Landsat 8 (OLI) images acquired during the 
2012/2013 agricultural season has been used to assess the spatial and temporal variability of crop 
evapotranspiration ETc and biophysical variables. The validation using the dual crop coefficient 
approach (Kcb) showed that the satellite-based estimates of daily ETc were in good agreement with 
ground-based ETc, i.e., R2 = 0.75 and RMSE = 0.79 versus R2 = 0.73 and RMSE = 0.89 for the  
Kc-NDVI, respective of the analytical approach. The assessment of irrigation performance in terms 
of adequacy between water requirements and allocations showed that CWR were much larger than 
allocated surface water for the entire area, with this difference being small at the beginning of the 
growing season. Even smaller differences were observed between surface water allocations and 
Irrigation Water Requirements (IWR) throughout the irrigation season. Finally, surface water 
allocations were rather close to Net Irrigation Water Requirements (NIWR). 

Reprinted from Remote Sens. Cite as: Akdim, N.; Alfieri, S.M.; Habib, A.; Choukri, A.; Cheruiyot, E.; 
Menenti, K.L.M. Monitoring of Irrigation Schemes by Remote Sensing: Phenology versus 
Retrieval of Biophysical Variables. Remote Sens. 2014, 6, 5815-5851. 

1. Introduction 

The interest for the assessment of irrigation performance using satellite data developed in the 
late 1980s due to growing consensus on the difficulty of collecting the required ground data 
continuously, reliably and in a consistent way across all major irrigation schemes worldwide [1–4]. 
Since in a large part of irrigated lands water is allocated proportionally to irrigated area, work was 
initially focused on the relation between allocated water and irrigated area, observable with 
multispectral satellite data [5]. Later on, other aspects of irrigation water management were 
evaluated, like crop water requirements [6–12], actual consumptive water use [13–18], water 
productivity [17,19–22] and water and salinity stress [23–29]. On a higher level of abstraction, 
irrigation performance may be evaluated for different objectives such as equity, adequacy, or 
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effectiveness [30–32]. In this study, we focus on the evaluation of adequacy by relating water 
allocation to water requirement. 

The most common and practical approach used for estimating crop water requirements (CWR) 
is the FAO-56 method (the Food and agricultural Organization of United States (FAO) Irrigation 
and Drainage Paper No. 56) [33], based on the combination of reference evapotranspiration ET0 
and crop coefficients (Kc) to determine crop evapotranspiration (ETc) under unrestricted water 
availability. In the majority of the studies, the Kc values are obtained by the single crop coefficient 
approach, where crop transpiration and soil evaporation are combined into a single Kc coefficient. 
Infrequently, the dual crop coefficient (kcb) approach is used, where the effects of crop transpiration 
and soil evaporation are determined independently [34–38]. The FAO-56 method is based on the 
use of crop specific parameters. While this is not an issue for on-farm evaluations of CWR, it 
becomes rather challenging when the objective is to monitor CWR of large irrigation schemes. In 
this paper, we have adopted the definitions CWR = ETc and irrigation water requirement  
IWR = ETc  P, where P is precipitation. 

Frequent mapping of crop types is, in principle, feasible using multispectral and multi-temporal 
satellite data [39–47], but accurate classification requires, in most cases, ground reference data and 
analysis of images acquired at multiple dates [48]. This makes timely availability of crop maps 
rather unlikely, thus reducing the timeliness and the reliability of a CWR monitoring service based 
on satellite data. 

Remote sensing methods which do not require knowledge of crop type to determine CWR have 
been developed taking advantage of the strong physical relationship between the spectral response 
of cropped surfaces and the corresponding values of CWR and Kc. Examples of these approaches 
can be found in [11,48–51]. To such end, empirical relationships have been found to retrieve the 
value of Kc or Kcb from simple vegetation indexes, i.e., NDVI (Normalized difference Vegetation 
Index) [52]. 

Several indices have been proposed as alternatives to NDVI to estimate Kc, such as  
the Perpendicular Vegetation Index PVI [53], the Soil-Adjusted Vegetation Index SAVI [54–57],  
the Weighted Difference Vegetation Index WDVI [58] and the Global Environment Monitoring 
Index GEMI [59]. These indices have been formulated in order to reduce the influence of 
perturbing effects such as the soil background or the atmospheric influence, which may alter 
significantly the reflectance of vegetated surfaces. 

A different approach is by using directly the Penman-Monteith equation either to determine a 
generic Kc (crop identification not required) or ETc [6,10,60,61]. This approach is based on 
retrieving from satellite data the crop properties which determine ETc, i.e., crop height (hc), surface 
albedo ( ), and leaf area index (LAI). The crop height influences the aerodynamic resistance (ra) 
term of the FAO Penman-Monteith equation and the turbulent transfer of vapor from the crop into 
the atmosphere. The ra term appears twice in the full form of the FAO Penman-Monteith equation. 
The surface albedo of the crop-soil surface influences the net radiation at the surface, Rn, which is 
the primary forcing factor of the transpiration and evaporation processes. The surface albedo ( ) is 
affected by the fraction of ground covered by vegetation and by the soil surface wetness. The 
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canopy resistance of the crop to vapor transfer is affected by leaf area (number of stomata), leaf age 
and condition, and leaf-level stomatal control. The fraction of exposed soil also affects Kc. 

In this study, we have applied and evaluated two methods to determine CWR, i.e., the one based on 
the correlation between Kc and NDVI (Kc-NDVI method) and the one using directly the  
Penman-Monteith equation (analytical method). We have applied both methods to evaluate the 
adequacy of water allocation in the Doukkala irrigation scheme. 

In the Doukkala area (Western Morocco), water demand has significantly increased over the last 
decades while fresh water resources are becoming increasingly scarce. This is mainly due to the 
combined effect of climate change, persistent drought and the increase of water demand related to 
increase in irrigated area, urbanization and recreational projects. This shows the necessity to use 
available water resources as effectively as possible in order to avoid or at least mitigate the 
consequences of recurring droughts. This is particularly important for water management in 
agricultural areas, where irrigation represents the biggest water consumer. 

This paper is organized as follows. After the description of the study area and the data collected 
(Section 3), we describe in detail our implementation of the two methods (Section 4), followed by 
the presentation of results, including the evaluation against in-situ observations, and concluding 
with global interpretation of our results. 

2. Study Area 

The Doukkala region lies in western Morocco, between 32°15 N and 33°15 N latitude and 7° 
55 W and 9°20 W longitude in the downstream portion of the hydraulic basin of Oum Er_Rabia 
(Figure 1). Geo-morphologically speaking, Doukkala is divided into three parts: the coastal area, 
the Sahel and the plain. The latter extends over an area of 3500 km2 and it is located at about  
120–130 m above sea level [62], with favorable conditions for agricultural development as regards 
arable land and soil fertility. 

The irrigated area of Doukkala is among the largest (96,000 ha) and earliest developed areas in 
Morocco, remarkable for its size and strategic importance for national production, specially sugar 
beet (38%) and commercialized milk (20%). The important crops grown in the study area include 
wheat, corn, sugar beet, and alfalfa [63]. 

The climate of Doukkala is typically semi-arid to temperate and mild in winter whereas in 
summer it is generally warm and dry, with a large inter and intra-annual variability of rainfall, 
which amounts to 316 mm/year on average (1964–2009). Reference evapotranspiration (ET0) is 
1434 mm/year on average 2000–2008. 

The irrigation is performed by means of different techniques with different efficiency (surface, 
sprinkler and drip irrigation) with a rotational interval of 15 days. Surface irrigation is the dominant 
system. Water allocation is calculated on the basis of current irrigated area, as determined on the 
basis of requests by farmers for each rotational interval. The gross irrigation water depth allocated 
to farmers is 864 m3/ha by rotational interval, equivalent to 1728 mm/month, which is largely 
sufficient to meet the water needs of the dominant crops. The water resources mobilized for 
irrigation come mainly from the dam Al Massira, a major water storage structure in the watershed 
of Oum Er-Rbia with a capacity of approximately 2760 × 106 m3. 
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Figure 1. Location map of Doukkala region. 

 

The Doukkala irrigation scheme is divided into the High and Low Sections. We focused on the 
Low Section, which contains three main districts: Faregh, Sidi Bennour and Zemamra, 
respectively, from the East to the West. Each district is divided into a number of Centers of 
Irrigation Management (CGR) irrigated with different irrigation systems (Table 1). The Doukkala 
irrigation scheme is managed by the Regional Office of Agricultural Development in Doukkala 
(ORMVAD). 

Table 1. Irrigation Systems in different Centers of Irrigation Management (CGRs) in 
three districts of the Doukkala Irrigation Scheme (ORMVAD-personal communication). 

District CGR Area (Ha) Irrigation System 

SidiBennour 

330 5305.25 

Surface Irrigation 

331 3520.06 
333 4293.39 
335 3202.49 
336 4197.1 
337 3112.55 
338  1738.92 

338 sprinkler 1905.3 Sprinkler Irrigation 

Zemamra 

320 2995.18 

Sprinkler Irrigation 
321 5327.4 
322 3243.68 
324 4565.71 
325 3122.27 

Faregh 

312 4840.24 Drip Irrigation 
332 1490.46 

Surface Irrigation 310 4468.60 
311 5021.25 
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3. Data Collection 

3.1. Satellite Data 

To meet the combined requirements of high spatial resolution and frequent imaging to monitor 
crop development and water requirements, we have combined image data acquired by multiples 
sensors at high and very high spatial resolution: (Landsat 8 (30 m), Spot 4 HRVIR1 (20 m) and 
Rapideye (5 m)) during the irrigation season 2012/2013 (Table 2). All satellite images acquired 
were corrected geometrically with the following system of coordinate: UTM, WGS-84, zone 29. 

An unprecedented time series consisting in Spot4 data (level 2A) with a five-day revisit interval 
has been acquired and analyzed. The Level 2A product is in-band surface reflectance corrected 
from atmospheric effects using the SMAC model [64]. 

3.2. Meteorological and Water Flow Data 

Daily meteorological data (i.e., Air temperature (Ta), relative humidity (RH), solar radiation 
(Rs), wind speed (U), precipitation (R) and reference evapotranspiration ET0) on the same dates of 
the satellite observations were collected at the Zemamra and Khmiss Mettouh meteorological 
stations and provided by ORMVAD. The observations at Zemamra were used for the district of 
Zemamra and the district of Sidi Bennour and the observations of Khmiss Mettouh were used for 
the district of Faregh. 

Data on monthly water allocation by CGR were provided by ORMVAD. The water allocation is 
calculated monthly for each tertiary and secondary irrigation unit on the basis of requests submitted 
by farmers for each rotational interval. The irrigated area of each farm is multiplied by the 
irrigation module (i.e., 864 m3/ha) to determine the duration of water delivery to each farm and the 
total volume to be delivered. These farm-level irrigation water depths were added up to obtain the 
monthly water allocation by the CGRs we have used in our assessments on the adequacy of  
water allocations. 

3.3. Data In-Situ 

Periodical field campaigns were carried out with multiple objectives: to explore the structure of 
the irrigation system over the area as well as the irrigation systems (surface irrigation, sprinkler 
irrigation and drip irrigation); to collect phenological data on the dominant crops and to collect data 
on fractional cover and crop height. 

The fractional cover (fc) and crop height (hc) of the dominant crops (wheat, sugar beet, alfalfa, 
berseem and corn) were measured in 22 pilot plots in the Zemamra and Sidi Bennour districts on  
17–19 December, 27–28 February, 3–4 April, 23–24 May, and 20 July  in the growing  
season 2012/2013. During the May and July surveys, 14 additional plots in the Faregh district  
were sampled. 
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Table 2. Overview of image data characteristics and coverage of the study area. 

SENSOR DATE Area 
SPECTRAL 

RESOLUTION ( m) 
Spatial 

Resolution 
ORBIT 

SPOT4-
HRVIR1 

From January to 
June 2013 

FAREGH 

XS1: 0.500–0.590 

20 m 
Altitude:832 km  
revisit: 5 days 

XS2: 0.610–0.680 
XS3: 0.790–0.890 
SWIR (HRVIR):  

1.530–1.750 

RapidEye-
REIS 

10 December 
2012 

ZEMAMRA 
SIDIBENNOUR 

Blue: 0.440–0.510 

5 m 

Altitude:630 km  
revisit: Daily  
(off-nadir);  

5.5 days  
(at nadir) 

Green: 0.520–0.590 

8 February 2013 

Red: 0.630–0.685 
Red-Edge:  

0.690–0.730 
NIR: 0.760–0.850 

Landsat 8-
OLI 

19 April 2013 

SIDIBENNOUR 
ZEMAMRA 

Coastal/Aerosol:  
0.433–0.453 

30 m 
Altitude:705 km  
revisit: 16 days 

Blue: 0.450–0.515 

26 April 2013 
Green: 0.525–0.600 
Red: 0.630–0.680 

13 June 2013 

NearInfrared:  
0.845–0.885 

SWIR:  
1.560–1.660 

29 June 2013 

SWIR:  
2.100–2.300 

Cirrus:  
1.360–1.390 

15 July 2013 
Panchromatic:  
0.500–0.680 

15 m 

For each plot (max. 1 ha), we measured hc in several points (5–6 points) with a graduated stick, 
and used the mean value of hc as representative of the plot. In the same plot, we estimated fc at 5–6 
locations using an approximate target of 1 m2, and took the mean value of fc as representative of the 
plot. Then, we calculated in-situ crop evapotranspiration ETc using the ground measurement of hc 
and fc combined with meteorological data (see Section 4.3.2 Dual crop coefficient approach). For 
each plot where we had such in-situ ETc, we obtained the corresponding satellite ETc by sampling 
image data as described in Section 5.3.3. 

In some cases, the difference between the dates of satellite data acquisition and field work date 
was significant. In these cases, we interpolated the temporal observations of hc and fc linearly to 
obtain estimates on the dates of acquisition of the satellite data. This gave 80 pairs of ground and 
satellite observations throughout the growing season. 
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4. Methods 

4.1. Work Flow 

Crop evapotranspiration ETc is the basic information for the evaluation of crop water 
requirements and irrigation management. In this work, we estimated ETc with two different 
methods: FAO-56 (kc—NDVI) and analytical approach. After the pre-processing of satellite 
images, ETc was estimated for the entire study area and the 2012–2013 growing season and 
validated using in-situ observations (Figure 2). The FAO-56 method is the most widely used 
method to compute ETc and is based on the estimation of the so-called “crop coefficient” Kc, 
defined as the ratio of total evapotranspiration ETc by reference evapotranspiration ET0. We 
evaluated our RS estimates of ETc using the FAO-56 dual approach to calculate the basal crop 
coefficient kcb and the evaporation coefficient ke. with the fc and hc observed in the field during the 
above mentioned surveys. 

Figure 2. Workflow of the methodology applied. 

 

The analytical approach is based on the direct application of the Penman-Monteith equation.  
The required vegetation properties are surface albedo (r), Leaf Area Index (LAI) and the crop 
height(hc) that are obtained from the processing of E.O data. LAI is used to compute canopy 
resistance (rc,min),,crop height to calculate the aerodynamic resistance (ra) and surface albedo is used 
to calculate the net shortwave radiation (Rns). 

4.2. Pre-Processing 

The study area is rather flat at an elevation of 150 m ± 15 m, thus we did not carry out an 
additional geometric correction taking into account the topography. 
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The radiometric calibration of satellite images was achieved in two steps:  
Firstly, by conversion of DN values into radiance; the following Equation (1) was used  

for conversion:  

 (1)

where, L is Top Of Atmosphere (TOA) band spectral radiance observed by the satellite. X is a 
Digital Number. A is the absolute calibration gain for relevant spectral band and B is the absolute 
calibration bias for relevant spectral band. 

Secondly, the atmospheric correction was performed on Landsat 8 and RapidEye data using the 
FLAASH model that incorporates the MODTRAN 4 model, and the input parameters used in this 
study are presented in Table 3. The model calculates the Top Of Canopy (TOC) in-band 
Lambertian reflectance p by means of a radiance-to-reflectance conversion, using the Equation (2):  

 (2)

where:  
L : TOA in-band spectral radiance observed by the satellite; s: Solar zenith angle; is the 

mean in-band solar exo-atmospheric constant; d is the Earth-Sun distance at sensor’s aperture, in 
astronomical units; d = 1  0.01674 cos(0.9856 (JD-4)), where JD is Julian Day. 

Table 3. MODTRAN input parameters used in this study. 

PARAMETER VALUE Date 

Model Atmosphere 

Mid Latitude Summer 

10 December 2012 
8 February 2013 

19 April 2013 
26 April 2013 

Tropical 
13 June 2013 
29 June 2013 
15 July 2013 

Aerosol Model Rural  
Aerosol Retrieval None  

Visibility 40 km (Default)  
Ground Altitude Above Sea Level 150 m  

For each band (VIS, NIR and SWIR), a time series of the pre-processed multispectral 
reflectance data was constructed using the nearest neighbor resampling to match the spatial 
resolution of the master image (UTM-WGS84). This layer stack was then exported as a multilayer 
GeoTIFF file, which is easily read and analyzed by Matlab. 

To evaluate the consistency of the multi-sensor reflectance data (Table 2), we have simulated [65] 
the Top of Canopy (TOC) spectral reflectance (400–2400 nm with 1 nm spectral resolution) for a 
very heterogeneous soil vegetation scene with widespread irrigation. We constructed a data set 
including 60,000 samples. For each sample, the 2101 spectral bands were convolved with the 
spectral response functions of the three sensors OLI (Landsat8), HRVIR1 (Spot4) and REIS 
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(RapidEye) to simulate the TOC reflectance observed by each sensor. The red and NIR reflectances 
were used to calculate the NDVI and WDVI for each sensor and for each sample. The OLI sensor 
was taken as the reference and the other two sensors (REIS and HRVIR1) were compared  
with OLI. 

For NDVI, the RMSE values were respectively 0.0469, 0.0328 and 0.02 for the pairs  
OLI-HRVIR1, OLI-REIS and HRVIR1-REIS, while for WDVI the RMSE values were 0.0288, 
0.0343 and 0.006 for the same sensor combinations. Accordingly, we neglected these differences 
and concluded that OLI, HRVIR1 and REIS gave consistent observations of WDVI and NDVI. 

4.3. Application of FAO-56 Model 

In 1998, FAO proposed the FAO-56 Penman-Monteith reference evapotranspiration (ET0) for 
irrigation scheduling [33]. This method has been widely used because it gives satisfactory results 
under various climate conditions across the world [66–69]. 

According to this model, two parameters are required to estimate the ETc: the crop coefficient kc 
and ET0. Crop coefficient curves provide simple, reproducible means to estimate ETc from  
weather-based ET0 values. ET0 is defined as the evapotranspiration of a reference grass, completely 
covering the soil, well-watered and actively growing under optimal agronomic conditions. 

In FAO-56, two approaches to determine kc are presented: the single crop coefficient approach 
(kc), which we have applied with remote sensing data, and the dual crop coefficient approach (kcb), 
which we applied only with ground measurement. 

4.3.1. Single Crop Coefficient Approach: kc-NDVI Method 

In the single crop coefficient (Kc), the effect of crop transpiration and soil evaporation is 
combined into a single Kc. The remotely sensed spectral reflectance data can be used to estimate 
Kc, because both Kc and spectral vegetation indices are correlated to leaf area index and fractional 
ground cover [70]. The simplest approach to derive Kc from remotely sensed data uses a linear 
relationship between Kc and NDVI (Normalized Difference Vegetation Index). NDVI is obtained 
from red (R) and near infrared (NIR) reflectance (0.6–0.7 m and 0.7–1.3 m, respectively), which 
are present in most imaging radiometers (Equation (3)). 

 (3)

This approach was introduced by [71] and used and validated in further case studies by [72–75]. 
The theoretical basis has been established by [70]. This approach is one of the most promising ones 
for operational applications [8]. 

We have further simplified this concept, following [49,50] by using their Kc-NDVI relationship 
(Equation (4)). This is a relationship between the maximum NDVI (set as 0.8) and the maximum 
Kc (1.2 at effective full cover) and the minimum (bare soil) NDVI (0.16) and bare soil Kc (0.4), 
respectively. These values are valid for NDVI calculated from in-band surface reflectance and they 
are not crop-dependent. 

RNIR
RNIRNDVI

+
−=
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1.25 0.2cK NDVI= × +  (4)

4.3.2. Dual Crop Coefficient Approach 

The dual crop coefficient approach of FAO-56 is intended to improve daily estimates of ETc by 
considering separately the contribution of soil evaporation (ke) and crop transpiration (kcb).The dual 
method utilizes “basal” crop coefficients (kcb) representing ET of a crop interspersed with dry  
soil, where:  

 (5)

As crops grow, the crop height and the leaf area change, and due to the differences in 
evapotranspiration during the various growth stages, the kc for a given crop will vary over each 
period. Following the FAO-56 approach (page 187–189) [33], growth season of the crop is divided 
into four distinct growth stages: initial, crop development, mid-season stage and late season. The 
kcb mid-season can be estimated from simple field observations and measurement of fractional 
cover (fc) and crop height (hc):  

( ) ( )
1

1
cb-mid c-min cb-full c-min c c-effK  K K  K min 1,  2f , f hc+= + −  (6)

where:  
Kcb-mid is the estimated basal Kcb during the mid-season when plant density and/or leaf area are 
lower than for full cover conditions; 
Kcb-full is the estimated basal Kcb during the mid-season (at peak plant size or height);  
Kc-min is the minimum Kc for bare soil (in the presence of vegetation) (Kcmin  0.15–0.20),  
fc is the observed fraction of soil surface that is covered by vegetation as observed from nadir 
[0.01–1], fc-eff is the effective fraction of soil surface covered or shaded by vegetation [0.01–1]. 
hc is the plant height (m). 

In Equation (6), we have applied the Kc-min and Kc-full values given by FAO-56 approach [33]  
(Table 17, page 137). 

The soil evaporation coefficient (Ke) can be estimated from (1  fc) using an empirical 
relationship given by [76] and applied in [15] for irrigated wheat field in Morocco:  

max (1 )e e cK K f= × −  (7)

It gives the maximum soil evaporation coefficient (Ke max) when the soil is bare (fc  0) and = 0 
when the vegetation attains full cover (fc  1). We adopted Kemax = 0.25 according to [15]. 

The choice of this value is not random but is based on the frequency and quantity of water 
supply and the rate of the reference evapotranspiration ET0. We have estimated Ke max = Kc ini at 
low fc, taking into account the frequency of irrigation and ET0. In our case, the frequency of 
irrigation is 15 days during the growing season and the mean value of ET0 is 3.5–4 mm per day. 

Finally, we have applied the procedure described above to calculate ETc for all reference plots 
and dates using our ground measurements of fractional cover (fc) and crop height (hc) and FAO-56 

c cb ek  k  k= +



191 
 

 

guide [33] (Table 17, page 137). We have used this ground based ETc data set to evaluate the 
remote sensing estimates of ETc obtained with the Kc-NDVI and the analytical methods  
described below. 

4.4. Analytical Approach 

Analytical approach is based on the direct application of the Penman-Monteith Equation (8) 
using crop characteristics estimated from satellite images, in analogy to the direct calculation 
proposed by FAO [10]:  

 (8)

where:  
 is the latent heat of vaporization [MT/kg]; Rns is the net short wave radiation (MJ/m2·d); Rnl is 

the net long wave radiation (MJ/m2·d); G is the soil heat flux (KJ/m2·s), De is the vapor pressure 
deficit of the air (KPa);  is the mean air density at constant pressure (kg/m3);  is the psychometric 
constant (KPa/°C);  is the slope of the saturation vapor pressure temperature relationship 
(KPa/°C); rc,min and ra are the minimum surface (in the absence of water stress) respective of the 
aerodynamic resistance. 

Note that Equation (8) gives an estimate of Kc by dividing ETc by ET0. 
In Equation (8), we have a radiative and an aerodynamic term. The former is the net shortwave 

radiation, Rns, while the latter accounts for turbulent transport of heat and vapor. 
The crop resistances rc,min and aerodynamic resistance ra require the knowledge of canopy 

geometrical characteristics. 
The surface albedo (r), the Leaf Area Index (LAI) and crop height (hc) can be integrated in the 

Equation (8) as follows:  

(1 )ns sR r R= − ×  (9)

,min
100

0.5cr LAI
=

×
 (10)

 (11)

where: Rs is the total incoming solar radiation (MJ/m2·d); ZU and Zh are the measurement  
heights for wind and humidity, respectively (m); hc is the crop height (m) and U is wind speed at 
height z (m/s). 

To determine the aerodynamic resistance (ra) with Equation (11), we have used the Equation (4) 
page 20 in FAO-56 [33] where we have set the zero plane displacement height (d = 2/3 hc), the 
roughness length for momentum Z0m = 0.123 hc and the roughness length for heat Z0h = 0.0123 hc, 
since we are dealing with full homogeneous vegetation canopies. 

,min
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The surface albedo (r) is the spectrally integrated hemispherical solar reflectance and is the 
driving variable of the radiation budget of a surface. The estimation of (r) can be done using 
measurements of the reflected solar radiance K ( , , ) (Wm 2·sr 1) at a wavelength  (nm) and 
can be expressed as a function of viewing zenith, , and azimuth,  angles, respectively  
(Equation (12)). However, the current sensor capabilities impose several simplifications. In the first 
instance, the observed surface is considered as Lambertian. In this case, the dependence of K  on  
and  will be neglected and r can be estimated from any direction of observation, by means of the 
Equation (13), using the reflectance corrected values for atmospheric effects,  and the weighting 
coefficient W  [77] 

The weighting coefficients calculated from the extraterrestrial solar irradiance E°  for each band 
for RapidEye (REIS), Landsat8 (OLI) and SPOT4 (HRVIR1) used in our study area are 
summarized in Table 4. 

 (12)

 (13)

Table 4. Weighting coefficients for the calculation of albedo  by using Equation (13) 
for different sensors. 

Sensor Spectral Band ( m) Weighting Coefficient W  

RapidEye (REIS) 

Blue: 0.440–0.510 0.2455 
Green: 0.520–0.590 0.2989 
Red: 0.630–0.685 0.1973 
NIR: 0.760–0.850 0.2583 

Landsat 8 (OLI) 

Blue: 0.450–0.515 0.2935 
Green: 0.525–0.600 0.2738 
Red: 0.630–0.680 0.233 
NIR: 0.845–0.885 0.1554 

SWIR: 1.560–1.660 0.0322 
SWIR: 2.100–2.300 0.0121 

Spot 4 (HRVIR1) 

XS1: 0.500–0.590 0.3925 
XS2: 0.610–0.680 0.3339 
XS3: 0.790–0.890 0.224 
SWIR:1.530–1.750 0.0496 

The Leaf Area Index (LAI) quantifies the amount of foliage area per unit ground surface area, 
and is an important structural property of vegetation canopies [58]. It is a crucial variable 
controlling many biological and physical processes associated with vegetation on the earth’s surface, 
such as photosynthesis, respiration, transpiration, carbon and nutrient cycle, and rainfall 
interception. In an operational context, the estimation of LAI from measurements of spectral 
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reflectance has been mostly based on the (semi) empirical relationships between this parameter and 
vegetation indices. 

The Weighted Difference Vegetation Index (WDVI) (Equation (14)) has the advantage to 
reduce to a great extent the influence of soil background on the spectral signal [58], by means of 
the factor C (Equation (15)). The soil line slope (C) represents a linear relationship between red and 
NIR reflectance of bare soil, and accounts for the effects of the soil background on the vegetation 
index, and depends on soil type, soil texture and soil moisture. 

 (14)

 (15)

where rir is the total measured NIR reflectance, rr is the total measured red reflectance; The rs,ir is 
the NIR reflectance of the bare soil, and rs,r is the red reflectance of bare soil. 

Once WDVI and WDVI  (representing the asymptotically limiting value for WDVI when LAI 
tends to infinity) are determined, a light extinction coefficient * has to be estimated in order to 
determine the LAI through the Equation (16):  

LAI = (–1/ *)ln(1 – WDVI/WDVI ) (16)

where * represents the light extinction through the vegetation canopy, while it is dependent on 
crop geometry and solar zenith angle. We have used the average value ( * = 0.37) established  
by [78] from field measurements of LAI and WDVI for different crops. 

An accurate estimation of crop height (hc) using spectral reflectance data is quite difficult.  
Several studies were conducted in this framework using airborne laser altimeter [79–81], and other 
studies, i.e., [82] using logarithmic relationships between hc and different vegetation indices (SAVI, 
WDVI, NDVI, TVI, etc.). The same author evaluated these relationships against field 
measurements of alfalfa and grass. Since hc can be estimated indirectly from the canopy roughness 
length (Z0m), [83] Brutsaert proposed a formula using (Z0m) (Equation (17)). Several relationships 
between NDVI-Z0m have been proposed by [84–86]. We have tested some of these equations and 
finally we have chosen the Equation (18) [84]. The values of the C2 and C3 coefficients have been 
determined by comparing estimates with Equation (18) and the C2, C3 values given by [84]. The 
values C2 = ( 5.2) and C3 = 5.3 gave the best agreement with our observations. 

 (17)

0 exp( 2 3 )mZ C C NDVI= + ×  (18)

4.5. Irrigation Performance Indicators 

Several researchers have demonstrated the use of satellite remote sensing derived information in 
conjunction with canal flow data for the evaluation of irrigation command [87–89]. A considerable 
amount of work has been undertaken in the past 30 years to develop a framework for  
irrigation performance assessment, related to equity, adequacy, reliability, productivity and  

rir rCrWDVI ⋅−=

rsirs rrC ,, /=

123.0/0mc Zh =
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sustainability [5,20,30–32,90–93]. A list of irrigation performance indicators that can be quantified 
by use of remote sensing has been proposed by [20]. 

In our study on the Doukkala irrigation scheme, irrigation performance was assessed on the 
basis of adequacy of irrigation water allocations by CGR. For a real assessment of irrigation 
performance, the precipitation should be taken into account by using Irrigation Water Requirement 
(IWR), i.e., CWR—Precipitation. Subsequently the value of performance indicator 2 (IP2) is 
determined for all CGRs [5]:  

 (19)

where: ETc is the total crop evapotranspiration (m3); k is the reference unit (in our case is the CGR), 
Pk is the total precipitation in the reference unit k (m3), and Vk is the volume received at reference 
unit k (m3). 

In this study, we calculated directly ETc (x, y) using the kc-NDVI and the analytical methods, 
which can then be integrated over the area of interest and compared with irrigation volumes to 
determine IP2 with Equation (19). In Equation (19), ETc (x, y) in (m3) is obtained by multiplying 
ETc in (mm) by the area of the pixel (x, y). 

5. Results and Discussions 

5.1. Retrieval of Crop Bio-Physical Variables 

The bio-physical variables required for ETc estimation (the surface albedo (r), Leaf area index 
(LAI) and crop height (hc)) are derived by applying the equations described in Section 4.3, to the 
time series constructed with the images listed in Table 2. 

5.1.1. The Surface Albedo r 

The surface albedo r depends on the sun elevation and zenith and azimuth view angles. The 
effect of sun elevation on the surface reflectance has been quantified by [77]. Since we used  
multi-sensor satellite data to construct albedo time series, the differences in terms of viewing angle 
and sun elevation were taken into account in the atmospheric correction and by considering the 
surface observed as lambertian. However, the differences in the spectral (number and width of 
bands) and spatial properties of the sensors used affected the estimated r. 

To assess the impact on our retrievals of surface albedo (r) due to the differences in spectral and 
spatial properties of the sensors, we compared (r) estimated by means of different sensors in the 
same date and area. This was possible within the Faregh district on 26 April 2013 by comparing 
HRVIR1 (SPOT4) and OLI (Landsat8) r-estimates. 

We chose 50 random pixels and then performed a linear correlation of OLI vs. HRVIR1  
r-estimates (Figure 3). The RMSE = 0.0135 and the correlation coefficient R2 = 0.768 indicate a 
good agreement of the estimated albedo with two sensors. The values of coefficient (0.77) and the 
offset (0.036) suggest that the residual error is not negligible. To evaluate whether this might be 
due to collocation errors of our data points, we repeated the comparison using larger samples. 
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Figure 3. Scatter plot of the estimated (r) by HRVIR1 (High Resolution in Visible and 
Infrared) vs. OLI (Operational Land Imager); Faregh district, 26 April 2013. 

 

We selected 10 independent and heterogeneous samples (20 pixels × 20 lines) of (r) estimated 
with each sensor (HRVIR1 and OLI). The analysis of the two populations of samples is presented 
in Figure 4. OLI data gave higher mean values of albedo than HRVIR1, with a lower spatial 
variability. The average of the 10 values of albedo estimated with HRVIR1 is 0.12 against 0.13 
estimated with OLI: this slight difference is mainly due to the contribution of the blue band (not 
sampled by HRVIR1) to the OLI albedo. 

Figure 4. Surface albedo (r) estimated with overlapping HRVIR1 (SPOT4) and OLI 
(Landsat8) data: distribution for the area of overlap (left), mean and standard deviation 
( ) for 10 samples of 20 pixels × 20 lines (right); Faregh district, 26 April 2013. 

We have evaluated the significance of the differences in the mean values of (r) estimated with 
the two sensors by calculating the mean and standard deviation value of (r) over all samples and 
applied a t-test (Student test) for the case of two variables with different variances. Taking into 
account the sample size and the standard deviations, the t-test (t) confirmed that the difference 
between these two estimates of albedo is not significant with 0.18 bilateral where t is the value of 
the t statistic, and p is the threshold of significance). The t-test gave very similar results for all 
samples except sample 5. The difference between the mean OLI-albedo and the mean  

mean 
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HRVIR1-albedo was 0.01: this gives a difference in ETc with 0.01 mm/day in winter and 0.05 
mm/day in summer, which are both negligible. 

Generally, in the entire study area, the surface albedo is low in winter, with a high frequency  
of values arranged between 0.1 and 0.15, and larger in summer with a high frequency of values 
between 0.14 and 0.23 (Figure 5). 

Figure 5. Comparison between the spatial distribution (absolute frequency) of surface 
albedo estimated by SPOT4 (HRVIR1) in winter and summer (Faregh District). 

 

5.1.2. The Leaf Area Index (LAI) 

For the estimation of LAI using Equation (16), we have to determine three parameters *, the 
coefficient C (Equation (15)) and WDVI . In our application, we applied * = 0.37 estimated by [78]. 

The C values were estimated by fitting a soil line to the scatter plot (Figure 6) of red versus NIR 
reflectance for all images of each study area (see Table 1). To determine the soil line, at first the 
dataset of each time series (study areas) was divided into multiple 0.002 intervals of red 
reflectance. Thus, within each interval the minimum value of infrared was selected [94]. To 
determine the soil line slope, a linear regression model was applied to the resulting rir vs. rir 
(minimum) subset taking into account only rir values less than 0.4 (bare soil). The slope of the soil 
line gives the value of C (Equation (15)) for each area: C = 1.20 (Sidi Bennour), C = 1.02 
(Zemamra) and C = 1.25 (Faregh). 

The values of WDVI  were calculated from the WDVI time series for each study area. In each 
image, the mean WDVI (WDVIm) and the standard deviation ( ) were calculated. The WDVI  of 
each image was estimated as WDVIm + 3  to filter out outliers. Finally, the WDVI  for each zone 
was calculated as the mean value (over all images) of WDVIm + 3 . These values were equal to 
0.46, 0.4 and 0.51 in Sidi Bennour, Zemamra and Faregh, respectively. 
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Figure 6. Scatter plot of minimum NIR vs. red reflectance and estimated soil line;  
Sidi Bennour district, see Table 1 for acquisition dates. 

 

The time series of the maps of the variables, i.e., LAI in Figure 7, clearly show the pattern of 
land cover and its temporal evolution. In the Sidi Bennour district, LAI values were small and quite 
variable in space on 15 December (mean = 1.78;  = 1.97) when some crops are at the beginning of 
their development stage (sugar beet and alfalfa) and others are going to be sown (wheat) while 
sugar beet, wheat and alfalfa reach the maximum vegetative development in February (mean = 2.98; 

 =2.11). In July (mean = 1.28;  =1.36), LAI values are lower because of the smaller cultivated area. 
LAI maps present sparse outliers that are generally isolated except for some plots where the high 

LAI values are further extended in space (see arrow in Figure 7c). Outliers in LAI maps are mostly 
due to saturation effect [95], i.e., the received radiance at the satellite exceeds the maximum value 
that can be measured by the sensor. This occurs in general for the NIR band. In the Faregh area, 
saturated pixels (filtered out in the generation of the SPOT 4 data product) were surrounded by 
pixels with very high, although not saturated, NIR reflectance (Blooming effect [96,97]). This case 
gives very high WDVI values and therefore very high LAI values (Figure 8). 

5.1.3. Soil Moisture and Radiation Control: LAI vs. Albedo 

The evolution over time of LAI and albedo is correlated (Figure 9). During spring and summer, 
the soil surface becomes drier and crops reach maturation and are harvested, leading to an increase 
in albedo and a decrease in LAI. However, we notice that both albedo and LAI increase in autumn 
and winter because of initial wetting by precipitation and crop development at the beginning of the 
growing season. 
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Figure 7. Spatial and temporal variability of LAI in Sidi Bennour (a) (LAI inset in 
December (b); February (c) and July (d)). 

 

Figure 8. (a) HRVIR1 saturated pixels: (a) Red band (negatives values), (b) NIR band  
(red color maximum value, yellow color blooming) and (c) Blooming effect on LAI 
values; Faregh district on 10 June 2013. 

 
(a) (b) (c) 
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Figure 9. Temporal profile of LAI (Blue) and Albedo (green) in the Sidi Bennour (a) 
and Zemamra (b) districts.; both LAI and albedo are mean values over each district. 

 

5.1.4. The Crop Height hc 

To estimate the aerodynamic properties of a vegetation canopy, we need the zero plane 
displacement height (d), the roughness length for momentum, z0m and heat, zoh, transport. When the 
surface is uniformly covered by vegetation, these properties are simply related to the crop height (hc): 

We analyzed the spatial variability of the estimated hc in winter (December 2012) and summer  
(July 2013) (Figure 10). Our own field observations (see Section 3.3) and local knowledge 
(ORMVAD personal communication) indicate that dominant crops in our study area (sugar beet, 
wheat, maize and fourage) have a maximum hc of approximately 1.2 m for wheat in winter, 2 m for 
maize in summer and 0.6 m for sugar beet. For the perennial crops, such as trees, we expect some 
high values in a few plots (max hc = 3 m). 

In winter, we notice a significant dominance of hc values between 0.1 and 0.5 m, with a lower 
frequency of values ranging between 2 and 3 m. In summer, a high frequency of small values of hc 
was noted since winter crops have just been harvested and summer crops are at the beginning of the 
development stage (maize, fruits and vegetables). The spatial variability of hc is larger in winter 
than in summer. 

The high values of hc in winter could be due to an over estimation depending on the relationship 
used to derive Z0m (see Equation (18)). When crops are completing the vegetative development, 
their chlorophyll content starts to increase even though their hc remains constant. During this phase, 
the high values of NDVI give high values of hc estimated by Equation (18). The effect of  
over-estimated hc values on ETc estimation was evaluated by a sensitivity analysis described in the 
following Section 5.2. 

5.2. Sensitivity Analysis of ETc to Bio-Physical Variables 

The ETc calculated with the analytical method (Equation (8)) depends explicitly on r, LAI and 
hc, while the kc-NDVI does not depend directly on any of these variables, since ET0 is calculated 
using constant values, i.e., r = 0.23, LAI = 2.88 and hc = 0.12. The overall dependence of ETc on 
crop conditions is accounted for by the value of kc and its evolution over time. The spatial 
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variability of ETc calculated with the analytical method can, therefore, be different from ETc 
calculated with the Kc-NDVI method, because of this different sensitivity to land surface conditions. 

Figure 10. Spatial variability (absolute frequency) of hc in winter (10 December 2012) 
and summer (15 July 2013) in Sidi Bennour. 

 

5.2.1. ETc (Analytical) versus (r-LAI) 

Figure 11 shows ETc vs. r for different LAI values. Here, ETc was calculated using meteorological 
data observed on 10 December 2012 and 15 July 2013, i.e., for low and high values of Rn. The 
value of hc was set to 0.40 m. These variables affect directly the values of ETc calculated by means 
of the analytical approach (see the points in blue color). The relationship between ETc and r can be 
very well approximated by a linear function, i.e., ETc (analytical approach) decreases with 
increasing value r, and increases with increasing value of LAI. The sensitivity of ETc to LAI is 
higher than to r. The impact of r on ETc (analytical approach) is slightly more pronounced in 
summer with higher solar irradiance. 

To assess the sensitivity of ETc calculated from Kc-NDVI method to LAI, we have derived 
NDVI using the following formula [98]:  

NDVI = 0.0653 ln (LAI) + 0.5872 (20)

We notice that ETc (Kc-NDVI) increases slightly with increasing value of LAI in both winter 
and summer, showing a small deviation and sensitivity to this geometric and structural variable. 
ETc (Kc-NDVI) does not depend on r. The difference between ETc estimated with the two methods, 
however, becomes greater with increasing r, and even more pronounced in summer with increasing 
solar radiation. In this context, we analyzed the temporal and spatial variability of ETc estimated 
with the two methods at different scales in the following section. 
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Figure 11. Relationship between crop evapotranspiration ETc estimated with the 
analytical approach (blue) as function of surface albedo r for different values of LAI 
and crop height hc = 0.4 m; values of ETc calculated with Kc-NDVI approach (black) 
for two values of NDVImin, NDVImax calculated with Equation (20) for the values 
LAImin, LAImax shown in this figure; (a) December 2012 and (b) June 2013. 

 

5.2.2. ETc (Analytical) versus (r-hc) 

We have assessed the sensitivity of ETc to hc and r under winter conditions (10 December 2012) 
and summer conditions (15 July 2013). In both cases, the value of LAI was set to 2, the surface 
albedo was varying from 0.05–0.25 and hc from 0.05–3 (Figure 12). 

In general, we notice that hc is not a critical variable for the estimation of ETc under both winter 
and summer conditions. As illustrated in Figure 12a, ETc hardly depends on hc, and increases very 
little with increasing hc. The increase is higher in summer when high values of the vapor pressure 
deficit (De) occur (Figure 12b). According to Equation (11), the direct effect of hc is negligible 
because it appears in both the numerator and denominator of the argument of the logarithm. 

The variability of ETc as function of albedo r is lower. Assuming a value of hc equal to 0.4 m, 
this assumption determines an error of ETc not larger than 0.2 mm during winter, and not more than 
1 mm under summer conditions. The increase of ETc that corresponds to the decrease in r is 
slightly more pronounced in summer conditions than in winter because of the higher solar 
irradiance in summer. 
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Figure 12. Relationship between crop evapotranspiration ETc (analytical method) and 
the surface albedo r for different values of hc and LAI = 2, in December 2012 (a) and  
June 2013 (b). 

 

5.3. Estimation of Crop Evapotranspiration ETc: kc-NDVI vs. Analytical Approach 

5.3.1. Temporal Variability 

Figure 13 shows the temporal evolution of daily ETc estimated by the kc-NDVI method and the 
analytical approach in the Sidi Bennour, Zemamra and Faregh irrigation districts during the 
growing season of 2012/2013. ETc estimated by the two methods has rather similar evolution while 
the difference increases significantly from winter to summer (Figure 13), thereby supporting the 
hypothesis raised previously in Section 5.2, about the combined effect of LAI and r in ETc values 
in summer. The values of ETc (analytical approach) are slightly higher than ETc values calculated 
by Kc-NDVI method. The radiative term of Equation (9) increases with decreasing albedo. The 
albedo used in the Kc-NDVI method is constant (r = 0.23) and higher than the mean value of 
albedo observed in our study, which explains the higher ETc values obtained with the analytical 
method. In another study [11], it has been shown that the kc-NDVI approach without a local 
calibration produces an average over-estimation of ETc of 17% in the case of corn and 19%  
for alfalfa. 

In the Faregh district, both methods show a high value of ETc at the beginning of the growing 
season. This is mainly due to the values of solar radiation Rs, relative humidity RH, air temperature 
Ta and especially the vapor pressure deficit De observed on the day of acquisition of the  
satellite data. 

In general, the temporal evolution of ETc reflects the dominant crop development in the study 
area. In Sidi Bennour and Zemamra, the dip in June represents the transition between winter crops 
(wheat and sugar beet) and summer crops (Maize). 
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Figure 13. Comparison between daily ETc estimates with the Kc-NDVI method and the 
analytical approach in the Zemamra, Sidi Bennour and Faregh districts. 

 

5.3.2. Spatial Variability 

Since the mean value of ETc estimated by the two methods is similar, we evaluated the spatial 
distribution of ETc at different spatial scales by calculating statistics (Table 5) of ETc with samples 
of 20 pixels × 20 pixels with respect to 200 pixels × 200 pixels. 

The mean values of ETc are quite similar for the two samples while the standard deviation (i.e.,  
the spatial variability) of ETc estimated by means of the analytical approach is significantly larger 
than ETc estimated with the kc-NDVI method. This applies to all months and depends on the 
combined effect of surface albedo, LAI and crop height in the analytical method. 

Table 5. Statistical variability of the daily ETc values at different spatial scales. 

  
Kc-NDVI Approach Analytical Approach 

Mean Standard Deviation Mean Standard Deviation 

20 × 20 
December 1.22 0.25 1.47 0.55 

April 4.06 0.74 4.08 0.90 
June 4.22 0.76 4.24 0.92 

200 × 200 
December 1.26 0.36 1.55 0.74 

April 4.58 0.72 4.78 1.08 
June 4.43 1.08 4.61 1.31 

The spatial variability of ETc must be taken into account when evaluating remote sensing 
estimates against point observations (see next section). 
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5.3.3. Validation 

The primary variable of interest to compute the performance indicator (Equation (19)) is the 
maximum evapotranspiration ETc. Accordingly, we compared our satellite-based estimates of ETc,  
by the kc-NDVI and analytical methods, with values calculated by means of the dual crop 
coefficient approach (kcb), using our ground observation of fc and hc. We used the kcb method as 
reference, because it is the most accurate for partial canopies and it takes explicitly into account 
vegetation fractional cover and crop height. It should be noted that the three methods are 
completely independent except for the use of the solar irradiance and the vapor pressure deficit. 

We noted in some cases anomalous values in the satellite-based estimates of ETc. We identified 
outliers in two ways: by filtering out estimates deviating more than 2.5  and more than 2  from the 
mean value of the difference. The latter filter leaves out about 18% of data points for either 
method, while the former about 13%. 

The Kc-NDVI method gave a better agreement with the reference ground based ETc with  
RMSE = 0.86 mm/d and RMSE = 0.79 mm/d, when applying the 2.5 –2  filter (Figure 14(Left)). 
Contrariwise, the analytical method gave a RMSE = 0.99 mm/d and RMSE = 0.89 mm/d when 
applying the same filters (2.5  and 2 ) (Figure 14(Right)). 

The analytical approach gave slightly higher RMSE than the Kc-NDVI method, namely it was 
13% higher when filtering values greater than 2.5  and 11% when applying the 2  threshold to 
identify outliers. In a previous statistical analysis, the two methods provided rather similar mean 
values both at the regional scale (Figure 13) and for the different sample sizes (20 × 20) and  
(200 × 200) (Table 5). However, since in the study area the typical plot size is 1 ha, to perform the 
validation of satellites based estimates using ground observations, we used 3 pixel × 3 pixel 
samples to extract the ETc values from the maps obtained with Landsat 8 data. We carried out a 
statistical analysis of ETc estimated with the Kc-NDVI method and the analytical approach at the 
plot scale using this sampling scheme. The ETc samples were analyzed separately for each 
acquisition date (Figure 15). The standard deviation of ETc gives an indication of how likely the 
agreement is between the ground measurements and satellites estimates. The time series of ETc 
was evaluated for each sample (from A–M) (Figure 16). 

As expected, we noticed that ETc is significantly larger at the plot scale (0.28 mm·d 1 in 
December and 1.16 mm·d 1 in June) than at the regional scale (0.25 mm in December and 0.02 mm 
in July (Table 5)), especially under summer conditions with high values of deficit vapor pressure 
(De) and solar radiation (Rs). The spatial variability of ETc within (1 ha) was very large especially 
for the samples B, C, F, H, K, L and M. At such locations, a large difference should be expected 
between in-situ and remote sensing observations. The analytical approach captures the spatial 
variability of ETc better than the Kc-NDVI method. 
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Figure 14. In-situ ETc estimated with the dual kc approach and ETc estimated with  
the analytical approach (a), the Kc-NDVI method (b), using (  < 2.5 ) (c), 

and for (  < 2 ) (d). 

 

Figure 15. Temporal analysis of ETc between estimates with the Kc-NDVI method 
and the analytical approach for 10 (1ha) samples (3 pixels × 3 pixels) during the  
2012–2013 growing season. 

 
  

c cET ETΔ − Δ

c cET ETΔ − Δ
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Figure 16. Statistical analysis of ETc standard deviation in 10 samples (3 × 3). 

 

5.4. Irrigation Performance Indicator 

5.4.1. CWR and IWR versus Water Allocation 

We collected the monthly surface irrigation water volumes allocated in the Low Section of the 
Doukkala irrigation scheme, in each district and each CGR (Table 1) (ORMVAD-personal 
communication). Monthly values of the performance indicator IP2 were calculated for each CGR 
and for each district, since data on water allocation were provided at this temporal and spatial 
aggregation. To obtain the monthly IP2 values, the remote sensing pixel-wise estimates of Kc 
available on specific days have been interpolated linearly to obtain monthly ETc values by 
multiplying the interpolated daily Kc value by the daily ET0. 

Less irrigation water is allocated in some cases when precipitations are significant. Irrigation 
Water Requirement (IWR) has been obtained by subtracting precipitation from the mean value of 
CWR (mm/month) estimated using the analytical approach. The comparison between CWR, IWR 
and water allocation (mm/month) for different districts and CGR, irrigated with different irrigation 
systems, is shown in Figure 17. 

CWRs were larger than water allocation for both the entire irrigation scheme and the irrigation 
units (CGR). The irrigation water deficit was low at the beginning of the growing season  
(December–February), and larger at the end of the season (June and July). Except for Faregh 
district, the mismatch between CWR and allocations is significant for all months. Water allocation 
was roughly constant throughout the year, irrespective of the increasing water requirements during 
summer (for Maize). In the district of Sidi Bennour and Zemamra, it should be taken into account 
that precipitation (IWR) slightly reduces the mismatch between water allocation and demand, 
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especially in winter when in some cases, the irrigation water deficit is converted into excess, i.e., 
February for a number of CGR. 

Unfortunately, the gaps in satellite data time series (January, March, May) in Sidi Bennour and 
Zemamra did not allow capturing fully the temporal evolution of water allocation and 
requirements. The total values of pixel-wise interpolated ETc in January, February and March were 
respectively 194 mm and 204 mm against 80.5 mm and 117.19 mm of irrigation water depth for 
Sidi Bennour and Zemamra district, and a total of 130.5 mm of rainfall for each district. This 
implies that IWR = 64 mm (Sidi Bennour) and IWR = 74 mm (Zemamra), i.e., water allocation was 
adequate. We concluded that from January to March, which represents the critical stage and the 
months of maximum development of the dominant crops i.e., sugar beet and wheat, the 
contribution of precipitation to meet CWR was significant. 

In the Faregh district, the precipitation does not reduce the mismatch between requirement and 
allocations in all cases, at the district and CGR scale. 

The ratio between IWR and water allocation (IP2) allows us to assess and understand the 
adequacy of water allocation in the entire area, in different locations of the primary canal  
of irrigation. 

5.4.2. Spatial Distribution of IP2 

The ratio between IWR volumes and surface irrigation water volumes gives the value of IP2.  
We have calculated IP2 for each CGR and district. An example of the spatial distribution of IP2 in 
February 2013, for the Sidi Bennour and Zemamra districts and the individual CGRs is shown  
in Figure 18. 

We noticed that the irrigation performance is not uniform over the whole study area. In some 
cases, the IP2 was lower than 1, which means that water allocation exceeded irrigation water 
requirements, i.e., CGR 338 in Sidi Bennour and CGR 322, 325 in Zemamra. To some extent, this 
excess is necessary to compensate for water losses and it remains to be evaluated whether a fraction 
of it could be used for supplemental amount of irrigation water volumes in other CGR where crops 
suffer from a significant water deficit, such as CGR 330, 333, 336, 337, 320, and 321. 

The irrigation performance indicator IP2 was used to assess the spatial pattern of adequacy  
between water consumption and allocation in the head–tail reaches of the primary irrigation canal 
(Figure 19). The water allocations show for some dates that no irrigation was provided to farmers 
in a given CGR. Accordingly, we have evaluated the IP2 head–tail end pattern only for February, 
April and June of the 2013 growing season. 

Large differences were found in irrigation performance between the head, the middle and the 
end of the system. 

In February 2013, the mean IP2 was approximately 1.06 in the beginning and the middle of the 
primary irrigation system which means a properly performing irrigation, but was around 1.33 at the 
end of the system. Although water is reported to be sufficiently available during the main season, it 
can be concluded that there are significant differences in adequacy towards the tail-end of the 
system (CGR 322, 321, 320 and 325). 
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Figure 17. Comparison between the temporal variability of CWR, IWR mean values 
and water allocation (mm/month) for different districts with an example of a CGR. 

 

In April and July 2013, the adequacy was lower at the beginning and the end of the system and 
better in the middle of the system, i.e., no clear head–tail end pattern in irrigation performance  
was observed. 

These two results can be explained by the continuous control of water flows in the irrigation 
system, which apparently was less effective in offsetting head–tail end patterns in February 2013.  
On the other hand, it should be noted that the irrigation performance was lower in April 2013,  
when water allocations were about half the water requirement. 
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Figure 18. Distribution of IP2 per CGR for both Sidi Bennour and Zemamra districts in 
February 2013 using the background of RapidEye image. 

 

Figure 19. Head–tail end patterns of IP2 in the irrigated perimeter of Doukkala. 

 

6. Application in Irrigation Water Management 

In this study, we have demonstrated the potential of using satellite remote sensing as a practical 
tool for CWR estimation for improved understanding of water use in major irrigation schemes such 
as the Doukkala. Repetitive multispectral and high resolution imaging of this agricultural area was 
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used to provide a precise and quantitative evaluation of the crop water needs during different 
irrigation periods during the growing season of 2012/2013. 

In practice, the information provided by remote sensing could be used for irrigation water 
management in two ways: pixel-wise CWR data or aggregated CWR data by CGR or district. 

The pixel-wise CWR data provide a reference for better precision in quasi-real time scheduling 
of irrigation water depth. The primary users of this information are farmers and the operators of the 
tertiary canals. As shown in Figure 14b, the difference between reference ground based and 
estimated CWR (using the analytical approach) was RMSE = 0.86 when applying the 2.5  filter. In 
this case, the pixel-wise CWR data will present useful information for precise irrigation scheduling, 
when the spatial variability of CWR in the plot scale is higher than RMSE. 

The CWR data aggregated by CGR and district provide a reference to adjust water allocation.  
The primary user of this information is the water management body, in our case ORMVAD, at the 
different management levels involved in planning and operation of water distribution. In general, it 
is necessary to take into account the difference between CWR, irrigation water requirement (IWR),  
and net irrigation water requirement (NIWR) in order to determine water allocation. 

The assessment of the irrigation performance can only be done by simultaneously assessing the 
CWR, IWR, and more precisely using NIWR, which is the quantity of water necessary for crop 
growth, taking into account the rainfall. Information on irrigation efficiency is necessary to be able 
to estimate IWR given NIWR. The water balance in the soil–plant–atmosphere continuum can be 
described by models such as the Soil Water Atmosphere Plant (SWAP) model to estimate the 
NIWR by parameterizing root water uptake as a function of soil pressure head and soil water 
deficit. We have estimated NIWR by adding the soil water deficit on all dates of irrigations, where 
the latter are determined by maintaining crop transpiration at the potential rate. An estimation of 
the monthly NIWR (mm) for the dominant crops in the study area (wheat, sugar beet and alfalfa) 
using the SWAP model [99,100] for the growing season of 2000/2001 gave a mean value of 54.7 
mm·m 1 [101]. 

As illustrated in Figure 17, the CWR is significantly larger than water allocation for the entire 
study area with 20–30 mm·m 1 of mismatch in winter for both the Sidi Bennour and the Zemamra 
districts. In summer, the CWR becomes much larger than water supply by 90–145 mm·m 1 in June 
and July, respectively. In the Faregh district, CWR is much higher than irrigation water depth, i.e., 
around 50 mm·m 1 in winter and 70 mm·m 1 in summer. 

This mismatch between requirement and allocation is improved for the entire study area when 
taking into consideration rainfall by means of IWR. For example, in February 2013, water 
allocation was almost equal to IWR in Sidi Bennour, while being just 10 mm lower than IWR in 
Zemamra. In the same month, water allocation exceeded IWR by 38 mm in CGR 325 and by 14 
mm in CGR 335. In this case, water allocations were adequate. 

In general, under summer conditions with an absence of rainfall, the mismatch between 
requirement and allocation remains high. However, the NIWR (54.7 mm·m 1) is rather close to 
water allocation in winter and adequacy is reasonable in summer with the mismatch decreasing 
from 90–145 mm·m 1 to 30–50 mm·m 1. We cannot conclude, however, that water allocations can 
meet NIWR since we should take into account conveyance and operational irrigation water losses 
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from the secondary canal to the plot. Bos, M.G. et al (1974) [102] evaluated over 250 irrigation 
schemes worldwide and estimated irrigation water losses at 50%. Taking into account water  
losses, net (on farm) water allocation would still be lower than NIWR in winter and much lower  
in summer. 

Spatially speaking, and as shown in Figure 18, the adequacy of water allocation could be 
improved by reducing the water excess in some CGR and by using it in others where a deficit has 
been assessed. Likewise, the temporal distribution of water allocation could be improved by 
reducing water allocation at the beginning of the growing season and increasing it in summer. 

7. Conclusions 

The study confirmed that crop water requirement (CWR) can be estimated with satisfactory 
accuracy using a generic algorithm, which does not require prior classification of crops. The 
appraisal of irrigation performance in terms of adequacy between requirements and water 
allocation at both the district and CGR (Centers of Irrigation Management) level documented a 
significant mismatch of requirements and allocations. Taking rainfall into account, the difference 
between requirements and water supply becomes acceptable in winter, but the irrigation water 
deficit increases in summer (90–145 mm·m 1). The mismatch in both winter and summer becomes 
even lower when the net irrigation water requirement (NIWR) is taken as a reference. 

This was achieved by constructing a time series of multi-spectral satellite image data with 
different spatial, temporal and spectral resolutions (SPOT4 HRVIR1, Landsat8 (OLI) and 
RapidEye (REIS)), and implementing (semi-) empirical algorithms to assess phenology (Kc-NDVI 
method) and retrieve canopy biophysical parameters (analytical approach), such as surface albedo 
(r), leaf area index (LAI), and crop height (hc). The spatial distribution of Kc, r, LAI and hc was 
used in conjunction with ground-based meteorological data for mapping maximum crop  
evapo-transpiration (ETc). These methods are fast, robust and easily applicable to large data sets and 
thus suitable for operational purposes. 

Calera, A.B. et al (2005) [49] recommended the use of Kc-NDVI method to estimate CWR,  
and mentioned that the methods based on the retrieval of canopy biophysical variables are very 
complicated and give similar final results to the Kc-NDVI method. In our case, we have assessed 
the difference between the two methods, and we have concluded that they give rather similar mean 
values of ETc but the analytical approach captures much larger spatial variability which is very 
useful for precision irrigation scheduling using pixel-wise CWR data. 

In general, both spatially and temporally, the adequacy of water allocation to requirements could 
be improved by judicious management of irrigation, i.e., by reducing the water excess in some 
CGR/date and using it in others in deficit. 
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Earth Observation Based Assessment of the Water 
Production and Water Consumption of Nile  
Basin Agro-Ecosystems 

Wim G.M. Bastiaanssen, Poolad Karimi, Lisa-Maria Rebelo, Zheng Duan, Gabriel Senay, 
Lal Muthuwatte and Vladimir Smakhtin 

Abstract: The increasing competition for water resources requires a better understanding of flows, 
fluxes, stocks, and the services and benefits related to water consumption. This paper explains how 
public domain Earth Observation data based on Moderate Resolution Imaging Spectroradiometer 
(MODIS), Second Generation Meteosat (MSG), Tropical Rainfall Measurement Mission (TRMM) and 
various altimeter measurements can be used to estimate net water production (rainfall (P) > 
evapotranspiration (ET)) and net water consumption (ET > P) of Nile Basin agro-ecosystems. Rainfall 
data from TRMM and the Famine Early Warning System Network (FEWS-NET) RainFall Estimates 
(RFE) products were used in conjunction with actual evapotranspiration from the Operational 
Simplified Surface Energy Balance (SSEBop) and ETLook models. Water flows laterally between net 
water production and net water consumption areas as a result of runoff and withdrawals. This lateral 
flow between the 15 sub-basins of the Nile was estimated, and partitioned into stream flow and  
non-stream flow using the discharge data. A series of essential water metrics necessary for successful 
integrated water management are explained and computed. Net water withdrawal estimates (natural 
and humanly instigated) were assumed to be the difference between net rainfall (Pnet) and actual 
evapotranspiration (ET) and some first estimates of withdrawals—without flow meters—are provided. 
Groundwater-dependent ecosystems withdraw large volumes of groundwater, which exceed water 
withdrawals for the irrigation sector. There is a strong need for the development of more open-access 
Earth Observation databases, especially for information related to actual ET. The fluxes, flows and 
storage changes presented form the basis for a global framework to describe monthly and annual water 
accounts in ungauged river basins. 

Reprinted from Remote Sens. Cite as: Bastiaanssen, W.G.M.; Karimi, P.; Rebelo, L.-M.; Duan, Z.; 
Senay, G.; Muthuwatte, L.; Smakhtin, V. Earth Observation Based Assessment of the Water 
Production and Water Consumption of Nile Basin Agro-Ecosystems. Remote Sens. 2014, 6,  
10306-10334. 

1. Introduction 

Water is becoming an increasingly scarce resource worldwide as a result of economic and 
demographic development pressures. While agriculture is generally assumed to be the largest 
consumer of water in Africa and Asia, future increases in food production will be critical to ensure 
human wellbeing in both these regions and globally. Projections indicate that producing enough food 
to meet the demands of a global population of 9.1 billion people by 2050 require levels of food 
production in 2007 to be increased by approximately 60%, and doubled in sub-Saharan Africa and 
parts of South and East Asia ([1,2]). In order to achieve this level of increase on a sustainable basis, 
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it is critical that new strategies and approaches are employed to increase agricultural productivity, 
while sustaining ecological systems and the services they provide. 

Water scarcity, defined as of the threat to people’s livelihoods due to lack of access to safe and 
affordable water for drinking, sanitation, and food production (Rijsberman, [3]), is increasing  
in many regions along with salinization and pollution of rivers and water bodies and degradation of 
water-related ecosystems (FAO, [4]). Mobilizing the necessary water resources to increase food 
production will require informed decisions within the water sector and in related sectors  
(Thenkabail et al., [5]; Rebelo et al., [6]). It is estimated that annual agricultural water use will need 
to increase from approximately 7,100 km3 globally to between 8,500 and 11,000 km3 in order to meet 
projected food requirements in 2050 (de Fraiture et al., [7]). Projections suggest that over the next 
several decades the population of people whose livelihoods will be affected by water scarcity will 
rise to two-thirds of the world population ([8–12]). 

In order to effectively manage resources, decision makers require information on how much water 
is available and how much is being used and consumed for various purposes, as well as an understanding 
of how water availability will change under future scenarios (e.g., Droogers et al., [13]). Increases 
in water scarcity are obvious from fast declining groundwater reservoirs, degraded wetlands and 
terrestrial lands and associated ecosystem services, and increased vulnerability to hazards such as 
droughts and floods. Most water is consumed through natural evaporative processes, but a portion is 
also consumed through anthropogenic influences (e.g., actual evapotranspiration from reservoirs, 
irrigation, aquaculture, domestic use, plantations, greenhouses, etc.). Closed basins occur where the 
total actual evapotranspiration (ET) has exceeded the gross inflow from rainfall and interbasin 
transfers. Flows in streams and aquifers could be enhanced by appropriate reductions in ET  
(e.g., [14]) to meet reserved flows for environmental purposes (e.g., Smakhtin et al., [15]), navigation 
needs, or reserved flows for downstream commitments. A reduction in consumption means that less 
water is evaporated or exported in products or flows to sinks. This reduction is also known as a real 
water saving (Seckler, [16]) because water resources will remain physically in the basin for a longer 
period of time. Upstream versus downstream water availability is an extremely sensitive issue in  
trans-boundary river basins such as the Nile River. A reduction in withdrawals leaves more water in 
rivers, lakes, reservoirs and aquifers, which is beneficial if most of the available water is utilized 
downstream. If most of the available water is utilizable, then a reduced withdrawal is a lost 
opportunity to boost local agronomies, industries and environments, provided environmental flow 
commitments are met (which is basically included in the definition of utilizable flows). Access to 
data that underpins information for decision making is largely erratic in vast basins such as the Nile. 
The availability of hydrological data and information related to water management is limited to local 
agencies. While many attempts are made through, for example, the Nile Basin Initiative (NBI) and 
the Food and Agricultural Organization of the United Nations FAO-Nile agricultural water 
management program, it remains a challenge to describe the key hydrological and catchment-scale 
processes in a geographically and spatially distributed manner. Water management information such 
as withdrawals, stocks, waste water return flows and groundwater well yields are kept by the 
individual water use sectors. Most of the classical hydrological research (e.g., Shahin, [17], Sutcliffe 
and Parks, [18]) is based on rainfall gauges and streamflow measurements, and quantification of the 
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ET process is not given much attention. Actual ET has however a major impact on streamflow, and is 
paramount for quantifying ecosystem services. A recent overview of several open-access rainfall 
products was published by Serrat-Capdevilla et al. ([19]). 

The objectives of this paper are to demonstrate (i) how Earth observation data from multi-platform 
satellites can contribute to the generation of an open-access data set that provides insights into the 
major water flows and fluxes of the Nile River basin and (ii) the need for a sound system of water 
metrics and the use of a consistent, comprehensive framework, in order to enhance the understanding 
of river basins by stakeholders who make decisions on the retention, allocation and release of scarce 
water resources. The volume of renewable water produced by various agro-ecosystems is quantified, and 
it is demonstrated where, and how much water of the Nile is consumed, all on the basis of  
Earth observations. 

2. Materials and Methods 

The River Nile is fed by two main river systems: the White Nile, with its sources in the Equatorial 
Lake Plateau (Burundi, Rwanda, Tanzania, Kenya, Democratic Republic Congo and Uganda), and 
the Blue Nile, with its sources in the Ethiopian highlands. The sources are located in humid regions, 
with an average rainfall of over 1000 mm per year. The arid region starts in Sudan and extends into 
northern Ethiopia and Egypt. The Nile basin comprises 15 sub-basins (see Figure 1). The network of 
hydro-meteorological gauging stations in the Nile basin is meager. In situ data are generally not 
easily accessible. Earth observation measurements have the potential to complement the lack of 
available and accessible in situ measurements. Earth observation data are available on-line; they are 
based on true measurements made at particular moments (t) and for a specific geographic location 
(x,y). By sequencing repetitive measurements, a time series can be created. Flags can be used in the 
data sets to indicate or identify the quality of data. Data set methods to interpret and convert raw 
satellite measurements into hydrological variables are described in downloadable manuals, conference 
proceedings (e.g., Neale and Cosh, [20]) and journal special issues (e.g., Batelaan et al., [21]). 
Following (Nagesh Kumar and Reshmidevi, [22]; Karimi et al., [23]), it is argued that the remote 
sensing science has progressed sufficiently to ensure certain levels of accuracy. Many products now 
claim to have an accuracy better than 90–95 percent. 

The most important Earth observation data set for hydrology and water management is rainfall. 
In this case study, the open-access rainfall product from the Tropical Rainfall Measurement Mission 
(TRMM) version 7-product 3B43 is explored. The Famine Early Warning System Network  
FEWS-NET Satellite Rainfall Estimate [24], processed and archived by the Famine Early Warning 
System Network, has been utilized as well. The period of consideration lapses from 2005 to 2010. 
Only monthly rainfall data sets have been created in this study. The two selected rainfall products 
were both subjected to first-level calibrations, using rain gauges, by the provisional agencies. The 
official rain gauges of the Nile basin registered with the World Meteorological Organization (WMO) 
have been verified, and it seems that most of them have substantial data gaps. These gaps make an 
independent verification of TRMM and RFE cumbersome, and in the absence of independent 
verification, it was decided to use the data products as they are. The average values of the two 
products were computed. 
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Figure 1. Location of sub-basins of the Nile River system delineated by the Nile  
Basin Initiative. 

 

The second largest hydrological flow path is actual ET. While open-access data sets for rainfall 
have a long heritage and are rapidly increasing, the generation of similar data sets for actual ET is in 
its infancy. Several leading institutes have started to develop global-scale ET maps; however, they 
are currently in the process of verifying the maps before opening new ET data portals. Open-access 
actual ET data sets are currently provided by a few institutes only, and include the Land Satellite 
Application Facility (LandSAF) under aegis of Eumetsat using the Tiled ECMWF Surface Scheme 
for Exchange over Land (TESSEL) algorithm (Van den Hurk et al., [25]; Belsamo et al., [26]). The 
ET data are computed with the Second Generation Meteosat (MSG) data having a spatial resolution 
of 3 km at the equator and extending to 5 km for European cover. The Global Evaporation Monitoring 
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Amsterdam Model (GLEAM) is published by Mirales et al. ([27]) at a spatial resolution of 17 km, 
and while these data are not available online, the data were acquired for this study from the authors 
on request. The standard MODIS 16 ET product (Mu et al., [28]) has an open-access status at 1 km 
spatial resolution, although the University of Montana requires a form of registration for use of the 
product. Several ET comparison studies have concluded that MOD16 is not favorable (e.g.,  
Kim et al., [29]; Trambauer et al., [30]). Guerschman et al. [31] from the Commonwealth Scientific 
and Industrial Research Organisation (CSIRO) and the National University of Australia have 
developed the global coverage CRMSET model. Anderson et al. [32] have applied their Alexi energy 
balance model to the global scale. These two latter data sets are expected to become open-access 
within the next year. Bastiaanssen et al. [33] developed the two-layer ETLook energy balance 
algorithm and computed ET for the Nile basin for the years 2007 (complete basin), and 2005 and 
2010 (equatorial Nile only). The best ETLook pixel dimension currently is 250 m. Because the 
ETLook model output is not routinely available, the retrieval of multiple year ET data for the current 
study was based on the Operational Simplified Surface Energy Balance (SSEBop) model, recently 
developed and tested by U.S. Geological Survey Earth Resources Observation and Science (EROS) 
Center (Senay et al., [34]). SSEBop has a pixel dimension of 1 km and computes the surface energy 
balance on the basis of thermal infrared measurements by the MODIS satellite. It is an example of a 
model in the category of potential ET-soil moisture reduction methods. The SSEBop model output 
has a high operational potential and the data will be compared with the ETLook model, which was 
used successfully in earlier studies in the Nile basin and provides a good reference (Karimi et al., [35]). 
SSEBop and ETLook both utilize climatic data from weather stations and or atmospheric models. A 
complicating factor with most ET algorithms is that they utilize satellite images during clear sky days 
only. Thermal images are taken during cloud-free days when wet surfaces are unlikely to occur. 
During rainfall events, leaves, soil and paved surfaces get wet for a short period, and this interception 
process is not properly considered by most remote sensing-based surface energy balance models. 
The water film on the surface induces a temporary extra net radiation value, that contributes to a 
quicker drying of the wet surface; this is also known as the positive drying feedback effect 
(Dickinson, [36]). This enhanced drying process is a result of lower albedo ( ~0.05) and lower 
surface temperatures ( T~2K). Except for GLEAM, none of the other ET algorithms includes this 
process of temporary enhanced interception energy and ET. This aspect needs to be considered when 
compiling the water balance for each land use class, as it can be expected that existing remote sensing 
algorithms have a systematic underestimation of actual ET during wet events.  

Africover is a land cover data set that was compiled for East Africa, with data available for all 
African countries, except Ethiopia (e.g., Di Gregorio and Jansen, [37]). The purpose of Africover is 
to produce the geographic information required for decision making, planning and natural resources 
management in African countries. The original Africover data set contains more than 500 land use 
classes. The land use classification system developed for Water Accounting (WA) by  
Karimi et al. [38] was used in this paper and the Africover classes have been converted into  
60 individual WA+ classes that can be regrouped again into four categories that are relevant for water 
management: (i) protected land use (PLU), (ii) utilized land use (ULU), (iii) modified land use 
(MLU) and (iv) managed water use (MWU). While PLU is legally protected, ULU has a light 
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utilization and several features of natural ecosystems. MLU and especially MWU are controlled by 
the human desire to boost capital growth and improve the quality of living.  

Access to monthly and annual values of rainfall and ET by land use class, opens an innovative 
pathway to start describing rainfall excess, and hence lateral water flows in an ungauged river basin 
system. Land use that fulfills P > ET will generate surface runoff, interflow, drainage, groundwater 
recharge, seepage and base flow. Besides P-ET being the main driver for flows in streams and rivers, 
P-ET also impacts the conditions affecting aquifer recharge. Agro-ecosystems where P > ET are 
referred to as net producers of water and are typically present in the forested upstream end of river 
basins. Such excess water moves downgradient in a given tributary to be used by other agro-ecosystems. 
Land use classes fulfilling ET > P are net water consumers. Agro-ecosystems that are net water 
consumers have an incremental ET that cannot be attributed to rainfall only, but also to other water 
sources with a natural origin, such as groundwater seepage, shallow water tables, interflow or 
inundations during annual wet seasons with high river flow levels. The incremental ET can also be 
caused by anthropogenic factors such as withdrawals for irrigation, drinking water supply, sanitation, 
industries, water retention by reservoirs, etc. Ahmad et al. ([39]) and van Eekelen et al. ([40]) for 
instance demonstrated that incremental ET (ETincrem) can be inferred from net precipitation (ETPrecip) 
and the total ET:  

ETtotal = ETPrecip + ETincrem 

Net precipitation (ETPrecip) can be determined from gross precipitation (Pgross) using a certain 
efficiency factor  (e.g., Schreiber, [41]; Budyko et al., [42]; Gerrits et al., [43]): 

ETPrecip =  Pgross 

Estimates of ETincrem represent the net withdrawal and it is a first step in the estimation of actual 
gross withdrawals. ETincrem is referred to as a net value because substantial portions of the gross 
withdrawals return to the system. Information on both gross and net withdrawals is difficult to obtain 
from the national departments within the Nile Basin, and is the source of political concern. The next 
section shows some first estimates of the net withdrawals that can be made on the basis of using Earth 
observation data without flow meter data. This is new information related to Nile basin abstractions 
that has not yet been published. 

Information on the annual changes in storage ( S) is needed to link P and ET to flows. The total 
annual storage changes include (i) soil moisture, (ii) surface water and (iii) groundwater. Surface 
water changes were determined from altimeter observations over six major lakes and reservoirs (Lake 
Victoria, Lake Kyoga, Lake Kwania, Lake Tana, Lake Roseires and Lake Nasser). The altimeters 
used are Topex/Poseidon for rivers, and ERS-1 & 2, Envisat, Jason-1 and Geosat Follow-On (GFO) 
data for lakes. The Hydrology from Space website (http://www.legos.obs-mip.fr/soa/hydrologie/ 
hydroweb/) was consulted (Cretaux et al., [44]). Duan and Bastiaanssen [45] undertook a 
comparative analysis of several Earth observation-based altimeter products and concluded that 
space-borne altimeters provide water level fluctuations in 4.6–13.1% of in situ measurements.  
Space-borne altimeters are essential for the estimation of storage changes in large open water bodies 
of trans-boundary river systems. The changes in soil moisture were taken from the Global Land Data 
Assimilation System (GLDAS) database (Syed et al., [46]), and they are derived from simulated soil 
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moisture profiles in the vadose zone using a numerical land surface model. The changes in 
groundwater were measured on the basis of Gravity Recovery And Climate Experiment (GRACE) 
data, after corrections of soil moisture and surface water changes. GRACE estimates the total change 
of terrasphere storage from modifications of the gravitational forces. These three individual data sets 
(GRACE, GLDAS and altimeters) together will give an estimate of the total S and the breakdown 
in each component. It is beyond the scope of this paper to discuss all scientific aspects of storage 
changes and gravity, and we refer to the GRACE studies for storage changes provided by  
Syed et al. [46], Klees et al. [47] and Rodell et al. [48].  

3. Results  

3.1. Rainfall 

The difference in annual rainfall from TRMM and RFE is presented in Figure 2. The bar chart 
demonstrates that TRMM gives for most years a slightly higher rainfall over the Nile basin than RFE. 
The average value for the period 2006–2010 is 647 mm for TRMM and 600 mm for RFE. This is a 
difference of 47 mm or 8%. While this difference seems reasonable, the consequence of 8% 
difference at an average rainfall volume of 2013 km3 is a potential error of 161 km3/yr, which is two 
times the historic Nile flow at Dongola. This example demonstrates the need for a high accuracy in 
rainfall products. Because the official WMO rain gauge network is limited in number, and both 
TRMM and RFE have advantages and disadvantages, it is difficult to favor one of the rainfall 
products without in-depth research. For pragmatic reasons, the pixel values of the two rainfall 
products were linearly averaged. Ensemble rainfall products based on Earth observation data will 
likely lead the way forward to obtain reliable rainfall data layers. The new Climate Hazard Group IR 
Precipitation Station (CHIRPS) rainfall product is an example of an ensemble product based on 
various interpolation schemes to create spatially continuous grids from raw point data based on 
climatology, satellite measurements and ground precipitation observations from a variety of sources 
(Funk et al., [49]). 

The average rainfall of the two products for the period 2005–2010 is 624 mm/yr (2013 km3/yr for 
a basin area of 3,229,038 km2). The FAO-Nile report (Hilhorst et al., [4]) gives an average rainfall 
volume of 2008 km3/yr for a basin area of 3,170,418 km2, which computes to 633 mm/yr, and which 
is close to the value used here (deviation is +1.4%). The FAO irrigation potential study mentions a 
rainfall of 615 mm/yr (deviation is 1.4%) for an area of 3,112,369 km2 or 1914 km3/yr (FAO, 1997). 
Kirby et al. estimated the Nile basin rainfall volume to be 2,043 km3/yr (627 mm/yr; deviation is 
0.5%) using data from the Climate Research Unit at the University of East Anglia (CRU TS 2.10) 
covering the period 1901–2002. Karimi et al. [50] summarized the water balance of the Nile, and 
estimated the total rainfall for the wet year 2007 as 2045 km3/yr, which is plausible for an  
above-average rainfall volume. Hence, the estimates appear to correspond closely. 

The consistency between the TRMM and RFE rainfall products for all 15 sub-basins is shown in  
Figure 3. The scatterplot demonstrates that the overall agreement is acceptable, but that large 
differences in local rainfall occur (RMSE is 153 mm/yr). The largest differences in absolute rainfall 
amounts occur over the equatorial Nile zone. The rainfall rates over Lake Victoria and the Victoria 
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Nile sub-basins are frequently more than 250 mm/yr different: the difference of 250 mm/yr is 
unlikely. Rainfall estimates of the Blue Nile sub-basin also seem to have unreasonable differences. 
It is therefore concluded that more research is needed to validate local rainfall products from Earth 
observation data. The success of calibration will increase if the data are exposed to a downscaling 
procedure first. Examples of calibrating downscaled rainfall products are provided in Duan and 
Bastiaanssen ([51]) and Hunink et al. ([52]). 

Figure 2. Annual rainfall of the Nile as estimated by the Tropical Rainfall Measurement 
Mission (TRMM) and RainFall Estimates (RFE) open-access rainfall products. 

 

Figure 3. Annual rainfall data from TRMM 3B43 and FEWS-NET RFE presented by  
sub-basin (n = 15) for the period 2005–2010 (n = 6). 

 

The rainfall regimes differ significantly across the different sub-basins, and rainfall evaluation 
should actually focus on the sub-basins only (see Table 1). The humid tropical Kagera, Lake Victoria, 
Semiliki and Lake Albert and Victoria Nile basins all show substantial amounts of rainfall throughout 
the year, with their peaks occurring during March and April (P > 100 mm/month). The central part 

y = 1.10x
R² = 0.93 

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

2005

2006

2007

2008

2009

2010

RFE (mm/yr)

TR
M

M
 (m

m
/y

r)



227 
 

of the Nile basin receives rainfall during June, July and August and is relatively dry during the period 
November to March. The area downstream of the Blue Nile sub-basin receives substantially lower 
rainfall amounts. Their access to water resources depends entirely on the rainfall surplus (P-ET) from 
the upstream basins. 

Table 1. Monthly rainfall from the combined TRMM and RFE products averaged for the 
period 2005–2010 by sub-basin. 

Sub-Basin 
Area  
(km2) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Total 
(mm) 

Main Nile 1 39.896 9 10 5 4 2 0 0 0 0 3 2 6 40 
Main Nile 2 199.564 2 2 2 2 2 0 0 0 0 0 1 2 13 
Main Nile 3 743.913 1 0 0 1 2 3 21 31 8 1 0 0 70 

Tekezze-Atbara 231.492 3 2 9 20 31 58 150 155 74 19 3 2 524 
Main Nile 4 35.338 0 0 0 2 7 5 31 51 19 4 0 0 121 

Blue Nile 307.262 6 11 22 36 87 138 231 225 140 63 14 6 978 
Lower White Nile 237.429 1 1 1 13 31 68 131 129 83 54 4 0 517 
Bahr el Ghazal 549.714 4 6 19 47 78 107 149 176 124 70 14 3 795 

Sudd 167.354 8 12 32 76 118 135 148 160 137 103 32 7 968 
Baro-Akobo-Sobat 230.368 23 22 50 94 130 119 140 140 134 111 62 27 1051 

Albert Nile-Bahr al Jabal 80.432 18 41 79 126 143 98 119 132 140 114 75 36 1121 
Victoria Nile 86.192 39 65 111 142 134 68 92 105 131 123 98 58 1166 

Semliki-L.Albert 70.646 55 90 121 109 99 50 54 93 122 120 118 64 1095 
Lake Victoria 191.317 104 105 163 167 136 53 45 58 88 101 140 125 1285 

Kagera 58.115 98 133 142 128 86 19 14 26 57 74 122 89 986 

3.2. Actual Evapotranspiration 

The application of the SSEBop model to the African continent is relatively new. Since 2012, ET 
anomaly products have been operationally served for various regions of the world at 
http://earlywarning.usgs.gov/fews/. While the U.S. Geological Survey (USGS) Earth Resources 
Observation and Science (EROS) Center is in the process of preparing an operational ET service 
(absolute magnitudes in addition to the already served anomalies) for Africa in line with the RFE 
rainfall products, the ET data have not been formally released, and are available only for special ET 
validation and water balance studies, such as presented in this paper, in Alemu et al. ([53]) and  
Senay et al. ([54]). SSEBop has been validated for locations in the US using flux towers  
(Senay et al., [34]; Velpuri et al., [55], Singh et al., [56]), water balances (Senay et al., [57];  
Velpuri et al., [55]) and lysimetric observations in the semi-arid Texas High Plains (Gowda et al., [58]; 
Senay et al., [59]). In addition, Senay et al. ([57]) described the comparison of ET layers between 
the earlier version of the algorithm (SSEB) and the more detailed output data computed with the 
Mapping EvapoTranspiration at high Resolution and Internalized Calibration (METRIC) model  
(Allen et al., [60]). METRIC is the American version of the Surface Energy Balance Algorithm for 
Land (SEBAL) model (Bastiaanssen et al., [61]). The METRIC comparisons for the State of Idaho, 
US, revealed a strong correlation (r2 = 0.90) for elevations less than 2000 m. The thermodynamic 
modelling of the land surface fluxes in METRIC is known to be substantially more advanced 
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compared to SSEBop. The SSEBop algorithm is an improved version of the SSEB, which is capable 
of handling a range of elevations (Velpuri et al., [55]). Furthermore, the simplification of the 
parameterization of the surface energy balance in SSEBop is justifiable and required in order to cover 
the African continent in an operational mode. Comparison studies for Africa will provide more 
insights into the absolute differences and agreements, and this paper contributes to that.  

Karimi et al. ([35,50]) report results of the ETLook model developed by Bastiaanssen et al. ([33]) 
for water balance and water accounts of the Nile basin during 2007. The total ET was estimated to 
be 2014 km3/yr during the 2007 above-average rainfall year. The availability of the 1 km × 1 km 
ETLook data set for 2007, as well as of the equatorial Nile for the years 2005 and 2010  
(Immerzeel et al., [62]), provided a great opportunity for comparison with SSEBop output data. A 
bias correction factor of 1.12 appears to be required. This bias can be related to hot and cold pixel 
computations with SSEBop that have been strongly simplified as compared to the original work of 
Bastiaanssen et al. [63] related to the selection of surface temperature end members. There is a single 
overall calibration coefficient in SSEBop that represents elements of the crop coefficient approach 
of FAO and the maximum values of evaporative fraction that are not necessarily 1.0 due to certain 
small values of sensible heat flux (H) over wet surfaces. This coefficient is ideal for bias corrections. 
The overall scatter in the spatial data of ET is higher (R2 = 0.65) than observed for the open-access 
rainfall products (R2 = 0.93). The larger scatter implies that the spatial variability of ET patterns in 
ETLook and SSEB are larger than for rainfall. This difference can partially be ascribed to the higher 
spatial resolution (1 km × 1 km) of the ET product that generates more spatial contrast. Ground truth 
data are necessary to independently validate the ET products from Earth observations. This validation 
can best be done with the help of flux towers at a few locations, and with accurate water balances of 
paired catchments. 

After this bias correction of 1.12, the longer term average actual ET for the period 2005–2010 
was computed with SSEBop as 1863 km3/yr. This is the actual ET rate that occurs due to radiative 
and advective energy. The additional energy due to net radiation increment of wet leaves is not 
included. After inclusion of the additional “interception energy”, the longer term total actual ET 
value totaled 1987 km3/yr, which is 6.7% more than the ET under dry surface conditions. The term 
“total ET” is used to express the inclusion of this extra interception energy. The lowest total ET of 
1851 km3/yr occurred during the year 2010, while 2007 had the highest total ET volume  
(2142 km3/yr). The coefficient of variation of the 6 years analyzed is 6.2% only, and this indicates a 
temporary stable situation of actual ET for the whole Nile basin. The temporal stability can be 
ascribed to the large area of desert with negligible ET values. 

The monthly ET layer for each sub-basin is presented in Table 2. These values represent a mix of  
agro-ecosystems. The sub-basin with the highest ET per unit of land is the Sudd (1209 mm/yr) 
followed by the Albert Nile—Bahr Al Jabal (1144 mm/yr). Both sub-basins host extensive wetlands 
and tropical forests, and have a rich biodiversity. Mohamed et al. ([64]) estimated the ET rates of a 
38,600-km2-wide Sudd area to be 1636 mm/yr. The areas prone to floods were included in their 
analysis. The central part of the Sudd (shown in Figure 4) displays actual ET rates between 1500 and 
2000 mm/yr, similar to the ET values reported by Mohamed et al. ([64]). The spatial coverage of the 
entire Sudd sub-basin is 167,354 km2, which is substantially larger than the area used by  
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Mohamed et al. ([64]), and includes the pastures surrounding the wetlands. This difference in area 
provides a logical explanation for the lower ET value shown in Table 2 (1209 mm/yr). The lowest 
ET by sub-basin occurs in northern Sudan and upper Egypt where the majority of the agro-ecosystem 
is desert (74 mm/yr). The impact of irrigation on the sub-basin averaged ET is clear when considering 
the sub-basin average ET value for the Main Nile 1 sub-basin (472 mm/yr). This value is roughly an 
average value for a landscape consisting of double cropping systems in the Nile delta (ET of  
1000–1500 mm/yr) and desert land (ET of 10–100 mm/yr). 

Table 2. Monthly actual evapotranspiration (including interception) from the calibrated 
SSEBop model (mm/month). The update is based on a bias factor and a correction term 
for “interception energy” during periods when the land surface contains a water film and 
net radiation is temporarily enhanced. 

Sub-Basin 
Area  

(km2) 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Total 

(mm) 

Main Nile 1 39,896 13 21 36 49 46 60 76 75 45 24 15 11 472 

Main Nile 2 199,564 3 4 6 8 8 9 10 10 7 4 3 2 74 

Main Nile 3 743,913 1 1 1 1 3 10 28 30 11 5 3 1 97 

Tekezze-Atbara 231,492 19 15 15 16 23 53 79 79 70 44 23 18 453 

Main Nile 4 35,338 2 2 3 3 7 18 51 61 25 5 1 1 180 

Blue Nile 307,262 45 38 37 39 52 72 89 87 90 83 57 47 737 

Lower White Nile 237,429 35 29 25 22 34 62 95 100 80 64 38 34 617 

Bahr el Ghazal 549,714 51 48 53 50 68 81 93 95 88 80 62 53 823 

Sudd 167,354 97 87 86 79 102 105 104 103 109 119 114 103 1,209 

Baro-Akobo-Sobat 230,368 87 70 65 70 82 82 86 82 92 106 99 91 1,012 

Albert Nile-Bahr al Jabal 80,432 85 72 88 87 105 100 94 93 105 114 113 88 1,144 

Victoria Nile 86,192 93 77 90 89 91 85 82 84 90 101 99 86 1,067 

Semliki-L.Albert 70,646 92 82 90 86 86 83 78 78 84 88 90 87 1,023 

Lake Victoria 191,317 96 90 102 95 89 82 80 79 83 86 88 85 1,056 

Kagera 58,115 77 67 82 83 82 73 68 69 68 71 79 71 891 

Hence, the average total ET for the Nile basin for the period 2005–2010 is 1987 km3/yr. The  
FAO-Nile program estimated the total ET to be 1991 km3/yr (Hilhorst et al., [4]), being a difference of 
less than 0.2%. Their methodology is based on a classical water balance calculation for sub-basins. 
Actual ET over rainfed areas is assumed to be equal to the reference ET0 when there is enough water 
stored in the soil to allow actual ET fluxes to be equal to ET0. During dry periods, a soil moisture 
reduction term is used. The land use map for irrigated areas was derived from AQUASTAT, and it was 
assumed that actual ET equaled ET0 after correction with a crop coefficient that reflects pristine 
growing conditions, without any moisture or salinity stress, following Allen et al. ([65]). Open water 
and wetland evaporation was estimated from reference evapotranspiration and calibrated through 
closure of the water balance. Unfortunately, the boundaries of the sub-basins reported by  
Hilhorst et al. ([4]) are not identical to the official boundaries of the sub-basins outlined by the Nile 
Basin Initiative and used in this paper. It is therefore more useful to compare ET expressed as a rate 
per unit of land, and not by volume. Except for Bahr el Ghazal and Sudd, the differences are within 
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15% (see Table 3) and the RMSE is 295 mm/yr. The overall correlation of R2 = 0.92 between the  
FAO-Nile ET by basin and the aggregated ET value on the basis of 1 km × 1 km pixels is encouraging, 
despite the differences between the geographical coverage. 

Figure 4. Distribution of the annually accumulated actual evapotranspiration across the 
Nile basin averaged for the period 2005–2010. The pixel size is 1 km. The data are based 
on SSEBop being calibrated against ETLook and adjusted for interception energy. 

 

Kirby et al. ([66]) estimated the ET (referred to as “water use”) to be 1828 km3/yr, with the 
majority of the water being evapotranspired by grassland (937 km3/yr), followed by woodland and 
other (563 km3/yr), rainfed agriculture (264 km3/yr), and irrigated agriculture (65 km3/yr). 
Remarkably, they did not report on the evaporation from open water bodies, and that is one of the 
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reasons that their total value of 1828 km3/yr is lower than the 1987 km3/yr found in this study. The 
Kirby et al. model calculates actual ET based on potential ET and water availability. Potential ET 
acts as an upper boundary for actual ET. Storage of water in soil and on the surface is calculated 
using a soil moisture bookkeeping procedure and water balance equation. Sub-basins identified as 
Main Nile 1 and 2 are the irrigated areas in Egypt. The average ET of these sub-basins for the period 
2005–2010 is 35 km3/yr, and this number compares well with the 35 km3/yr of ET in agriculture 
mentioned in the National Water Resources Plan for Egypt (MWI, [67]). In addition, there is ET 
from surface evaporation (2.5 km3/yr), fallow land 0.9 km3/yr, fish ponds (0.2 km3/yr), and municipal 
and industrial use (2.5 km3/yr). Some of these national-scale non-agricultural ET values occur, 
however, outside the Nile basin. So, this ET number officially endorsed by the Egyptian authorities 
agrees well with the Earth observation estimates.  

Table 3. Comparison of longer term ET volumes (km3/yr) and fluxes (mm/yr) estimated 
by FAO-Nile (1960–1990) and the adjusted USGS EROS SSEBop model (2005–2010). 
The deviation is based on the ET flux values. 

FAO-Nile Adjusted SSEBop Model 

Description Area  ET  ET  Description Area  ET  ET  Dev  
(km2) (km3/yr) (mm/yr) (km2) (km3/yr) (mm/yr) (%) 

Main Nile d/s Atbara 877,866 108.8 124 Main Nile 1,2,3 98,3375 105.7 107 13.3 
Atbara 237,044 94.1 397 Tekezze-Atbara 231,492 104.8 453 14.0 
Main Nile d/s Khartoum 34,523 7.3 211 Main Nile 4 35,338 6.4 180 14.7 
Blue Nile 308,198 266.0 863 Blue Nile 307,262 226.4 737 14.6 
White Nile 260,943 144.5 554 Lower White Nile 237,429 146.4 617 11.4 
Bahr el Ghazal & el Arab 606,428 454.1 749 Bahr el Ghazal - Sudd 717,069 654.7 913 21.9 
Pibor-Akabo-Sobat 246,779 223.8 907 Baro-Akobo-Sobat 230,369 233.2 1012 11.6 
Bahr el Jebel 136,400 163.1 1,196 Albert Nile-Bahr - al Jabal 80,433 92.0 1144 4.3 
Kyoga-Albert 197,253 221.6 1,124 Victoria Nile Semliki - L.Albert 156,839 164.2 1047  6.8 
Lake Victoria basin 264,985 307.5 1,160 Lake VictoriaKagera 249,433 253.8 1018 12.3 

Total and average 3,170,419 1990.8 628  3,229,039 1987.6 616  

3.3. Water Balance  

The long-term average flows in the River Nile are measured and published in several sources. Based 
on data from Sutcliffe and Parks [18] and others, river flows at various points in the Nile basin were 
compiled before by Dai and Trenberth [68], Awulachew et al. [69], El-Shabraway [70] and  
Johnston [71]. The water balance for every sub-basin can also be computed from the Earth  
observation-based P, ET and S data. It is a unique situation to have spatially distributed ET data. In 
combination with flow data, the ET data will facilitate the understanding of the water balance of  
the Nile. 

Congruency between P, ET and S values can be obtained from the mass balance. The inflow and 
outflow across sub-basins can be determined by accounting for P, ET and S. Stream discharge 
gauges were used to measure flows in the main river courses. Outflow of sub-basins does not follow 
the main river course only. Inter-basin transfer also occurs through floods, smaller ungauged streams, 
groundwater flow and irrigation canals. The large flood plain in southern Sudan, stretching from the 
west (Bahr al Ghazal), across the center (Sudd) to the east (Baro Akabo Sobat), transfers large 
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amounts of water between sub-basins when the area is submerged. Ungauged streams traverse the 
hilly topography and undulating terrain of the Bahr al Ghazal and Victoria Nile. The Gezira irrigation 
system in Sudan is located in the lower White Nile sub-basin, and receives water released by the 
Roseires reservoir in the Blue Nile sub-basin. Irrigation is thus an essential inter-basin transfer 
process. Groundwater flow occurs in areas with strong groundwater recharge. A map with annual 
recharge rates of 100–400 mm/yr in the Nile basin was provided by MacAllister et al. [72] based on 
earlier work of Bonsor et al. [73]. The greatest recharge occurs in the Blue Nile, Sudd and Bahr al 
Ghazal. These areas are conspicuous in Figure 5. Areas with P-ET > 700 mm/yr occur in the Blue 
Nile sub-basin at the highlands of Ethiopia and Kenya. Values of P-ET also seem to be systematically 
higher in the southwestern part of Lake Victoria than at the eastern side of the lake. All the blue areas 
with P > ET in Figure 5 are net water producing areas. Besides the typical water towers at  
higher elevations, there are also vast areas in north Sudan that produce a thin layer of water  
(P-ET > 50–100 mm/yr), which volume-wise, contributes substantially to groundwater recharge and 
river flow (commonly via the groundwater flow system and baseflow).  

Excess water from the production areas are conveyed via streams and aquifers to the lower parts 
of the basin. The largest water consumers (i.e., most negative P-ET pixel values) are (i) lakes and 
reservoirs, (ii) wetlands and (iii) irrigated areas. The flooded area of the Sudd appears dominantly in 
Figure 5 due to a high percentage of permanent open water bodies and swamps. The wetland areas 
in the Bahr al Ghazal and Sobat also appear to be vast, although flood duration might be shorter than 
in the Sudd; due to shorter flood seasons, the ET rates in Figure 4 do not exceed 1400 mm/yr. The 
irrigation systems in Sudan are clearly visible, but P-ET is higher in absolute terms than for Egypt 
where the role of rainfall is basically excluded. The Kenana irrigation system located at the right 
bank of the White Nile near the town of Rabak is an exception, with rates of P-ET < 1000 mm/yr 
due to commercial monoculture sugarcane plantations. Egypt and the Sudd wetlands have large areas 
where the ET exceeds P by more than 1000 mm/yr, hence a substantial net withdrawal must occur. 

Congruency of P, ET and S was verified by comparing accumulated P-ET values from upstream 
to downstream with outflow measured at discharge gauges. The accumulation of P-ET is zero at the 
water divide and increases when going downstream along the river course trajectory. The 
accumulation of P-ET reverses after passing flood plains and other points of substantial withdrawals. 
The closure errors between the measured flow at discharge gauges and P-ET for each sub-basin are 
ascribed to ungauged inter-basin transfer processes discussed before. Maps of groundwater recharge 
were used to estimate whether the inter-basin-transfer is of surface or groundwater origin. The results 
are provided in Table 4. It is estimated that the lower White Nile is a net receiver of surface and 
groundwater from floods and groundwater seepage in the southern part of the sub-basin. Bahr al 
Ghazal and the Sudd receive inter-basin transfer during the flood season. Lake Victoria and the 
Victoria Nile discharge excess water through ungauged streams and by means of deep percolation 
towards the flood plain areas in southern Sudan. Inter-basin transfer in Egypt happens by leakage 
towards the Nubian Sandstone and Mohra aquifers, among others (Shahin, [17]; Elsawwaf et al., [74]). 
Surface water resources are withdrawn and transferred to newly reclaimed desert areas outside the 
Nile basin such as in Sinai, North Coast, Toshka and Oweinat. The net result of all these exchanges 
is that 5 km3/yr of groundwater leaves the Nile basin by inter-basin transfer in addition to a surface 
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water amount of 2 km3/yr. The average outflow to the Mediterranean Sea through the Nile branches 
and drainage canals of the Nile delta is estimated to be 14 km3/yr. The Egyptian National Water 
Resources Plan reports 12 km3/yr (drainage: 11.7 km3/yr; rivers 0.2 km3/yr). Faures et al. [75] 
estimated that 12.5 km3/yr drains to the sea and lakes, 1.2 km3/yr directly via the rivers. The 
agreement between the estimated outflow in the main river course of each sub-basin and the flow 
measurements is presented in Figure 6. The RMSE is 3 km3/yr without any bias for the 15 discharge 
stations and the correlation is excellent (R2 = 0.98). 

Figure 5. Water production areas (P > ET) and net water consumption areas (ET > P) for 
the Nile basin over the period 2005–2010. Lateral transport of water occurs from positive 
to negative areas, also non-conventionally via floods and groundwater flow. 
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Table 4. Annual water balance by sub-basin, averaged for the period 2005–2010.  
  Inter-basin transfer is estimated from closure of the water balance of each sub-basin. 

SB Name Inflow P ET+I Net GW interbasin Net SW interbasin S Outflow 

 (km3/yr) (km3/yr) (km3/yr) (km3/yr) (km3/yr) (km3/yr) (km3/yr) 

Main Nile 1 36 2 19 4 1 0.09 14 

Main Nile 2 55 3 16 4 1 0.22 36 

Main Nile 3 79 51 71 4 1 0.10 55 

Tekezze-Atbara 0 121 105 1 2 1.19 12 

Main Nile 4 87 4 6 4 2 0.07 79 

Blue Nile 0 299 237 5 6 1.54 50 

Lower White Nile 25 122 141 11 7 0.25 25 

Bahr el Ghazal 0 435 446 3 10 1.00 1 

Sudd 35 162 201 9 6 1.25 12 

Baro-Akobo-Sobat 0 242 232 1 0 1.17 13 

Albert Nile-Bahr al Jabal 33 90 91 2 1 0.08 35 

Victoria Nile 28 100 93 3 5 0.56 28 

Semliki-L.Albert 0 78 72 0 0 0.43 5 

Lake Victoria 5 246 208 6 8 2.00 28 

Kagera 0 57 52 0 0 0.78 5 

        

NILE 2005 to 2010  2013 1987 5 2 3 14 

The water balance check shows that P, ET and S spatial data from different types of satellites 
are consistent with the classical hydrological observations. The minor differences can be ascribed to 
ungauged lateral transfer of water outside the main river courses, apart from the fact that the reporting 
period of the discharge stations and the satellite data are not identical. Discharge measurement 
stations are not always located at the boundary between adjoining basins. For instance, the peak flow 
in Dongola is generally known to be 84 km3/yr, but Dongola is located in the central part of the Main 
Nile 3 sub-basin. The peak flow computed from P-ET is 87 km3/yr and occurs upstream of the  
Merowe dam. 

Considering this good agreement with flows and the plausibility of non-conventional inter-basin 
transfers, which cannot be neglected, it can be concluded that the P-ET values are highly realistic.  
Figure 5 is, to the authors’ knowledge, the first map of water producing and water consuming areas 
published for the Nile basin, and due to the acceptable values for inter-basin border flow, this 
information can be used for water accounting. Some examples of estimated drainage and withdrawals 
by agro-ecosystems are discussed in the next section. 
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Figure 6. Relationship between estimated outflow through the main outlet of each  
sub-basin for the period 2005–2010 and the longer term averaged measured  
river discharge. 

 

3.4. Net Water Producers and Consumers 

The FAO-Africover Land Use-Land Cover (LULC) product was used as a basis for identifying 
the agro-ecosystems with net production and net consumption of water. The results of the LULC 
map and the link to rainfall and ET are provided in Table 5. The complete data set for 43 LULC 
classes is provided in Appendix 1. The net water production comprises all non-consumed and  
non-utilized water resources and is defined simply as P-ET. It is the total drainage of all  
non-consumed water, assuming zero changes in storage. In cases where ET > P prevails, an effective 
rainfall coefficient of 70% (  = 0.7) has been used arbitrarily, hence the surface runoff and drainage 
production is 30% of P. In reality, the -factor is climate, soil and land use dependent (e.g.,  
Dastane, [76]), and more research is required to improve the estimation of  across heterogeneous 
landscapes. The remaining ET that cannot be met from P is referred to as the incremental ET due to 
surface water or groundwater withdrawals. This extra water consumption is feasible due to lateral 
transfer of water in the basin and can happen by manmade infrastructure or through natural 
groundwater flows.  

This analysis reveals that plantations are, in a relative sense, the major sources of exploited water 
in the River Nile (P-ET: 300 mm/yr). Rainfed crops follow with a water layer of P-ET being 181 
mm/yr. Plantations and rainfed crops are both Modified Land Use. It is a positive signal that these 
forms of land use generated by humans are the source of lateral flow. Because the rainfed crop area 
is five times larger than for forest plantations, crop plantations generate 68.7 km3/yr excess water 
(runoff, drainage, recharge), in addition to providing staple food. This is an excellent example of 
contributing simultaneous to food security and ecosystem services (Rebelo and McCartney,  
2012 [77]). The majority of these plantations can be found in the equatorial Nile region. 
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Table 5. Water production and consumption by land use-land cover class in the entire 
Nile basin for the period 2005–2010. Production was computed as P-ET when P > ET. For 
cases with ET > P, production was computed as 0.3 P. Net withdrawal was computed as 
ET-0.7 P. 

WA+ Code LULC Area ET ET P P P-ET Production 
Net  

Withdrawals

  (km2) (mm/yr) (km3/yr) (mm/yr) (km3/yr) (mm/yr) (km3/yr) (km3/yr) 

MLU2 Rainfed crops 380,180 749 284.6 929 353.3 181 68.7 0 

MLU1 Plantations 74,806 850 63.6 1150 86.0 300 22.4 0 

ULU4 Savannah 892,666 846 755.3 870 776.2 23 20.9 0 

ULU8 Pastures 441,240 423 186.9 442 194.9 18 8.1 0 

MWU17 Wetlands 10,057 1040 10.5 1092 11.0 52 0.5 0 

MWU11 Urban areas 58 769 0.0 815 0.0 46 0.0 0 

ULU19 Sinks 987 297 0.3 146 0.1 150 0.0 0,2 

MLU12 Urban areas 4740 473 2.2 142 0.7 330 0.2 1,8 

PLU4 Bare land 196,017 91 17.9 64 12.6 27 3.8 9,1 

MWU6 Reservoirs 6310 1566 9.9 48 0.3 1518 0.1 9,7 

ULU11 Bare land 679,835 62 42.1 52 35.4 10 10.6 17,3 

MWU1 Irrigated crops 54,733 812 44.5 282 15.5 530 4.6 33,6 

ULU16 Rivers and natural lakes 89,489 1445 129.3 1335 119.4 110 35.8 45,7 

ULU10 Wetlands 112,648 1206 135.9 960 108.1 247 32.4 60,2 

ULU1 Forests 285,271 1067 304.4 1053 300.5 14 90.2 94,1 

Total  3,229,039  1987.3  2014.1  298 272 

A layer of 1581 and 530 mm/yr, respectively, is evaporated in excess of rainfall with respect to 
reservoirs and irrigated crops. As pointed out before, the source of this incremental ET is not only 
surface water, but can also be groundwater that seeps out in flood plain areas and in shallow water table 
areas. The largest volumetric water consumer is forest. In addition to rainfall, forests consume 94 
km3/yr extra, most likely due to deep rooting and use of groundwater interflows. Forests in the Nile 
must be distinct groundwater-dependent ecosystems. The total forest ET is 304.4 km3/yr, indicating 
that forest in the Nile basin are substantial water consumers (304/1987 × 100%=15%). The gross 
rainfall is 300.5 km3/yr, and all this rainfall water is certainly not available for forest ET, especially 
during heavy storms when surface runoff from forested mountains is large. There is no runoff from 
forests during the dry season, and the fact that ET remains high during the dry season implies that 
groundwater must be tapped into. The  = 0.7 correction factor is used for forests also. More research 
is needed on local forest hydrology processes to estimate which part of the rainfall is stored in the root 
zone and subsequently available for root uptake during dry years, and which part of the rainfall runs 
off. Van Eekelen et al. ([40]) found for the Incomati basin that the net withdrawals by forests were also 
substantially higher than irrigated crops, which supports the findings for the Nile basin. Wetlands in 
the Nile basin have a net withdrawal of 60.2 km3/yr, which reduces the flow of water to downstream 
areas. The incremental ET from open water bodies (i.e., rivers and natural lakes; see Appendix 1) totals 
45.7 km3/yr (Table 5). This total ET value for natural bodies of water should not be confused with the 
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reservoirs that have an incremental ET of 9.7 km3/yr. Hence, the natural lakes and rivers consume more 
water than the manmade lakes. 

The irrigated area of 54,733 km2 is in agreement with earlier estimates of 55,360 km2 and 49,010 
km2 made by Awulachew et al. [78] and Bastiaanssen and Perry [79], respectively. FAO [80] 
estimated the total irrigation-equipped area in the basin at 50,790 km2. Hence, there are some 
acceptable differences that can be attributed to the type of data survey, the period under 
consideration, and definitions of irrigated areas. Table 5 indicates that the net withdrawal by the 
irrigation sector is 33.6 km3/yr. Bastiaanssen and Perry [79] estimated the total net withdrawal to be 
31.2 km3/yr for the year 2007; their value is remarkably similar to the value derived in this study, 
given that different data sources were used, and 2007 was a wet year with lower irrigation  
water requirements.  

Awulachew et al. [78] estimated the current annual irrigation requirement—or gross  
withdrawal—to be 65.9 km3/yr, which implies an average irrigation efficiency of 50% at a net 
withdrawal of 33.6 km3/yr, which is a reasonable number for the current flood irrigation practices in the 
Nile basin. Hilhorst et al. [4] report a basin-wide average irrigation efficiency of 49%. The FAO 
estimates of gross withdrawal were 67.7 km3/yr in 1997 and are thus close to Awulachew et al. [78]. 

4. Discussion 

The growing water scarcity in developed and developing countries prompts water professionals 
to deal more accurately with the management of water resources. Hydro-meteorological stations of 
rainfall, weather and stream discharge provide point measurements. The data are not publicly 
accessible, and many stations are dysfunctional. Actual ET is a key component of the water balance, 
but cannot be measured easily using in situ devices. There are only three flux towers in the Nile basin 
that measure ET flux. Access to spatially distributed P, ET and S data from Earth observations has 
a number of advantages including: (i) providing actual ET data that cannot be measured in situ, (ii) 
providing information on all agro-ecosystems in Prediction of Ungauged Basins PUBs, (iii) the data 
are open-access, (iv) the data are scientifically verified by the providing agencies who have strict 
data protocols, (v) the source of the measurements is provided and can be inspected and verified in 
case of disputes, and (vi) the data are archived indefinitely. The contribution of Earth observation 
data for improved management of water resources in Africa will increase substantially if, in addition 
to rainfall products, competing ET products are made freely accessible. The SSEBop and Alexi data 
sets would be a valuable addition to the existing open-access MOD16 and LandSAF products for Africa. 
The provision of 30 m EEFlux data in the near future will be another important contribution  
(Allen et al., [81]; Morton et al., [82]). The new version of the Alexi model developed by  
Anderson et al. ([32]) has a spatial resolution of 1 km, and is also based on thermal infrared radiation. 
Alexi has been applied to the Nile basin in some recent National Aeronautics and Space 
Administration (NASA) studies (http://svs.gsfc.nasa.gov/vis/a000000/a004000/a004044/). 

This paper has demonstrated that P-ET information is of strategic importance for describing the 
redistribution of water resources in basins without flow meters. Agro-ecosystems that produce water 
will need to be managed carefully, to ensure that they continue to provide this ecosystem service, 
and that they sustain rainfall (van der Ent et al., [83]). Spatially discretized information on net water 
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withdrawals or incremental ET is also fundamental for discussions on redistribution of water among 
competing user groups. While classical statements concerning withdrawals are typically limited to 
irrigated crops, this study demonstrates that groundwater-dependent ecosystems extract twice as 
much by utilizing groundwater. In situations of droughts or dry years, it is especially relevant to 
prioritize water allocations in terms of the most urgent and important user needs.  

Although not discussed in detail, it was found that satellite information on storage changes is 
fundamental, but not yet reliable. The GRACE data are only applicable for areas with minimum 
dimensions of 300 km in the x and y direction. Changes in sub-soil moisture are not really 
measureable with multi-spectral radiometers from space. While claims are made that sub-surface 
moisture is a reflection of top-soil moisture processes (e.g., De Lange et al., [84]), this supposition 
cannot be supported in soil physical terms because complex 3-dimensional interactions between 
moisture in the soil and the vertical and horizontal water fluxes are at play. Better Earth observations 
systems are needed to compute sub-surface storage changes, especially for monthly-scale applications. 

Every remote sensing algorithm has its own uncertainty and limitations. The accuracy is expressed 
by the deviation between two values pertaining to a certain space and time domain, which is often 
referred to as an error. The uncertainty is expressed by the range of likely values and the RMSE is a 
good proxy for describing that range. The rainfall product from TRMM and RFE is validated by the 
provisional agencies, and is estimated to have an error of 0.5 to 1.4 % at the basin scale when 
comparing with independent sources. The RMSE values at sub-basin scale is 153 mm/yr (R2 = 0.93), 
hence locally there is more uncertainty of rainfall. The actual ET product deviates 0.2% at basin scale 
from the only reliable alternative data source based on earlier FAO work. At the spatial scale of a  
sub-basin, the RMSE is 295 mm/yr (R2 = 0.92). This implies that local values of actual ET are more 
uncertain than for rainfall. The congruency between rainfall and actual ET is excellent because the 
estimated river flows at 15 discharge stations have a RMSE of 3,0 km3/yr only, and the mean 
discharge is 100% accurate. We therefore believe that the water balance presented at the annual time 
scale for all sub-basin level is highly accurate. Locally, the uncertainty will be substantially larger, 
especially when dealing with monthly time steps. This is natural to any water balance analysis.  

Bastiaanssen ([85]) and Karimi et al. ([38]) recommended a water accounting system based on 
Earth observation data (see also www.wateraccounting.org). This paper confirms that some 
fundamental processes can indeed be derived from satellite measurements, even for vast basins with 
many ungauged catchments such as the Nile. Water accounting with the use of public domain Earth 
observation data is feasible if such data can be coupled to a local hydrological model that recognizes 
essential processes such as drainage, irrigation, recharge, baseflow and lateral groundwater flow. 
This is an attractive possibility next to the more complex accounting systems proposed by System of 
Environmental-Economic Accounting for Water SEEAW (United Nations, [86]), Australia 
(Australian Bureau Statistics, [87]) and Europe (Crouzet et al., [88]). 

5. Conclusions 

This paper is the first to describe the water balances of the Nile Basin and its 15 major  
sub-basins, based on Earth Observation data. Excess water flows from the water towers in the 
mountains and forests in the equatorial Nile belt and the Ethiopian Highlands are quantified. The 
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lateral transport of water throughout the ungauged basin as a result of floods, groundwater 
movement, small ungauged streams, and withdrawals—planned for irrigation and unplanned for 
groundwater-dependent ecosystems—are quantified.  

Open-access data portals for rainfall and ET are fundamental in making water resources 
assessment reporting feasible. While there are more than 15 operational rainfall products available, 
open-access ET layers are currently provided only by the LandSAF product (i.e., TESSEL) and 
MOD16. ET data layers from GLEAM, SSEBop, Alexi, CRMSET and EEFlux will likely become 
available within the next year. New high frequency and high resolution spatial data measured by 
Proba-V, Sentinel and Landsat-8 series satellites will enrich the current satellite data archives and 
enable refinement of ET and land use products. While sufficient materials have been used to 
demonstrate the overall accuracy of the results (the RMSE’s and R2 are acceptable, the discharge is 
congruent with P and ET, the irrigation withdrawals match), further independent scientific ground 
verification of ET fluxes and rainfall is required in these type of vast and transboundary river basins. 
Ideally, this should be done for small and instrumented catchments, through the inclusion of more 
eddy covariance towers and rainfall measurements using recent advances in technologies such as 
acoustic disdrometers (van de Giesen et al., [89]) or the attenuation of microwave signals between 
telecommunication towers (e.g., Overeem et al., [90]).  

The fluxes, flows and stocks presented in the paper can be used to determine monthly and annual 
water accounts. The analysis of the Nile basin indicates that most water is produced in rainfed crop 
areas (69 km3/yr) followed by areas of forest plantations (22 km3/yr). The four agro-ecosystems with 
the highest net withdrawals are forests (94 km3/yr), wetlands (60 km3/yr), open water areas  
(46 km3/yr) and irrigated crops (34 km3/yr). Because the net withdrawal by irrigated crops could be 
validated against third sources, and the total water balance for every sub-basin is closed, all class 
averaged net withdrawals are believed to be accurate.  
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Appendix 

Table A1. Comprehensive list of rainfall and ET by land use-land cover class. The 
classes are coded by the standard defined by Water Accounting Plus (WA+). 

WA+ Code Description  LULC Area  ET ET  P P P-ET  P-ET 

   (km2) (mm/yr) (km3/yr) (mm/yr) (km3/yr) (mm) (km3/yr) 

          

PLU4 Sand dunes Bare land 196017 91.4 17.9 64.1 12.6 27.3 5.3 

          

ULU1 Closed trees  

with closed to open shrubs 

Forests 9802 1182.2 11.6 1290.3 12.6 108.1 1.1 

ULU2 Closed multilayered trees  

(broadleaved evergreen) 

Forests 7109 1154.6 8.2 1286.4 9.1 131.7 0.9 

ULU3 Open trees with open shrubs Forests 268360 1060.7 284.7 1038.7 278.7 22.1 5.9 

ULU4 Closed shrubs Savannah 116480 1068.7 124.5 1096.5 127.7 27.8 3.2 

ULU5 Open general shrubs  

with closed to open herbaceous 

Savannah 342789 845.0 289.7 866.8 297.1 21.8 7.5 

ULU6 Closed shrubs with sparse trees Savannah 312953 693.8 217.1 738.6 231.1 44.8 14.0 

ULU7 Closed low trees  

with closed to open shrubs 

Savannah 120445 1030.2 124.1 998.2 120.2 32.0 3.9 

ULU8 Sparse herbaceous Pastures 419102 405.8 170.1 415.6 174.2 9.8 4.1 

ULU9 Closed to very open grassland Pastures 22138 758.0 16.8 936.4 20.7 178.4 4.0 

ULU10 River bank Wetlands 535 751.8 0.4 193.1 0.1 558.8 0.3 

ULU11 Bare soil stony (deep soil) Bare land 117213 33.1 3.9 30.7 3.6 2.3 0.3 

ULU12 Bare soil stony under reclamation Bare land 23530 386.9 9.1 384.2 9.0 2.7 0.1 

ULU14 Bare rock with a thin sand layer Bare land 396767 51.9 20.6 39.6 15.7 12.2 4.9 

ULU16 River Open water 4423 967.7 4.3 409.8 1.8 557.9 2.5 

ULU17 Natural lakes Open water 85066 1469.3 125.0 1382.9 117.6 86.4 7.4 

ULU18 Post Flooding Herbaceous Crop,  

Medium Fields 

Wetlands 25093 1111.3 27.9 938.4 23.5 172.9 4.3 

ULU19 Salt fields Sinks 987 297.0 0.3 146.5 0.1 150.5 0.1 

ULU20 Closed medium herbaceous  

on permanently flooded land -  

brackish water 

Wetlands 112 787.4 0.1 74.6 0.0 712.8 0.1 

ULU21 Bare soil Bare land 142325 59.8 8.5 49.5 7.0 10.3 1.5 

ULU24 Open general woody  

with closed to open herbaceous  

on temporarily flooded land 

Wetlands 77743 1231.0 95.7 980.5 76.2 250.5 19.5 

ULU25 Closed trees on permanently  

flooded land - fresh water 

Wetlands 9166 1286.6 11.8 894.6 8.2 392.0 3.6 

          

MLU1 Forest Plantation Plantations 74806 850.0 63.6 1150.0 86.0 300.0 22.4 

MLU2 Rainfed Tree Crop Rainfed crops 189204 869.4 164.5 1142.8 216.2 273.5 51.7 

MLU4 Rainfed Herbaceous Crop Rainfed crops 8952 752.4 6.7 350.7 3.1 401.8 3.6 
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Table A1. Cont. 

WA+ Code Description  LULC Area  ET ET P P P-ET P-ET 
   (km2) (mm/yr) (km3/yr) (mm/yr) (km3/yr) (mm) (km3/yr) 
MLU5 Rainfed Herbaceous Crop Rainfed crops 107661 541.4 58.3 618.1 66.5 76.7 8.3 
MLU6 Rainfed Shrub Crop/orchard Rainfed crops 2634 904.1 2.4 1103.2 2.9 199.1 0.5 
MLU7 Rainfed Herbaceous Crop Rainfed crops 70564 732.2 51.7 895.9 63.2 163.7 11.6 
MLU8 Rainfed Shrub Crop Rainfed crops 1165 866.1 1.0 1077.7 1.3 211.6 0.2 
MLU12 Dumps / deposits Urban areas 3 177.7 0.0 147.7 0.0 30.1 0.0 
MLU14 Airport Urban areas 94 401.9 0.0 360.5 0.0 41.4 0.0 
MLU16 Urban areas Urban areas 3490 503.3 1.8 60.3 0.2 443.0 1.5 
MLU17 Rural settlements Urban areas 1153 386.0 0.4 372.4 0.4 13.6 0.0 
          
MWU1 Irrigated Herbaceous Crop  Irrigated 

crops 
12983 744.3 9.7 287.8 3.7 456.5 5.9 

MWU2 Irrigated Herbaceous  Cereal Irrigated 
crops 

9275 835.5 7.7 351.2 3.3 484.3 4.5 

MWU2 Irrigated Herbaceous Crop  
(1 add. Crop) Large to  
Medium Fields – Maize, Clover 

Irrigated 
crops 

5621 839.2 4.7 41.7 0.2 797.5 4.5 

MWU3 Irrigated Orchard,  
Small Fields - Citrus spp. 

Irrigated 
crops 

17698 822.3 14.6 428.3 7.6 394.0 7.0 

MWU4 Irrigated Herbaceous Crop  
(1 add. Crop) Small Fields 

Irrigated 
crops 

6449 921.0 5.9 68.8 0.4 852.2 5.5 

MWU5 Irrigated Forest  
Plantation - Eucalyptus 

Irrigated 
crops 

2707 682.2 1.8 75.7 0.2 606.5 1.6 

MWU6 Artificial Lakes or  
Reservoirs 

Open water 12 1156.3 0.0 461.9 0.0 694.4 0.0 

MWU8 Snow Open water 5918 1642.6 9.7 46.1 0.3 1596.5 9.4 
MWU10 Fish Pond Open water 381 391.3 0.1 66.2 0.0 325.1 0.1 
MWU11 Refugee camp Urban areas 33 765.7 0.0 821.9 0.0 56.2 0.0 
MWU15 Urban Areas Vegetated Urban areas 25 772.8 0.0 806.5 0.0 33.7 0.0 
MWU17 Open trees with closed to  

open herbaceous on  
temporarily flooded land 

Wetlands 5443 984.4 5.4 1101.4 6.0 117.0 0.6 

MWU18 Very open trees with  
closed to open shrubs  
on temporarily  
flooded land - fresh water 

Wetlands 4614 1105.2 5.1 1080.4 5.0 24.7 0.1 

Total   3229039  1987.3  2014.1  26.8 
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Application of a Remote Sensing Method for Estimating 
Monthly Blue Water Evapotranspiration in  
Irrigated Agriculture 

Mireia Romaguera, Maarten S. Krol, Mhd. Suhyb Salama, Zhongbo Su and  
Arjen Y. Hoekstra 

Abstract: In this paper we show the potential of combining actual evapotranspiration (ETactual) 
series obtained from remote sensing and land surface modelling, to monitor community practice in 
irrigation at a monthly scale. This study estimates blue water evapotranspiration (ETb) in irrigated 
agriculture in two study areas: the Horn of Africa (2010–2012) and the province of Sichuan 
(China) (2001–2010). Both areas were affected by a drought event during the period of analysis, 
but are different in terms of water control and storage infrastructure. The monthly ETb results were 
separated by water source—surface water, groundwater or conjunctive use—based on the Global 
Irrigated Area Map and were analyzed per country/province. The preliminary results show that the 
temporal signature of the total ETb allows seasonal patterns to be distinguished within a year and 
inter-annual ETb dynamics. In Ethiopia, ETb decreased during the dry year, which suggests that less 
irrigation water was applied. Moreover, an increase of groundwater use was observed at the 
expense of surface water use. In Sichuan province, ETb in the dry year was of similar magnitude to 
the previous years or increased, especially in the month of August, which points to a higher amount 
of irrigation water used. This could be explained by the existence of infrastructure for water storage 
and water availability, in particular surface water. The application presented in this paper is 
innovative and has the potential to assess the existence of irrigation, the source of irrigation water, 
the duration and variability in time, at pixel and country scales, and is especially useful to monitor 
irrigation practice during periods of drought. 

Reprinted from Remote Sens. Cite as: Romaguera, M.; Krol, M.S.; Salama, M.S.; Su, Z.;  
Hoekstra, A.Y. Application of a Remote Sensing Method for Estimating Monthly Blue Water 
Evapotranspiration in Irrigated Agriculture. Remote Sens. 2014, 6, 10033-10050. 

1. Introduction 

The assessment of water use is crucial in a changing environment in which water is an essential 
but scarce resource. From a water management perspective, an accurate evaluation of the irrigation 
water used in agriculture is of high importance. The AQUASTAT database [1] shows a wide range 
of values on water withdrawal for irrigation, with values ranging for example from 0.6% of total 
national water withdrawal in the Netherlands to 60% or 85% in Spain and Tanzania, respectively. 

Crop water use or evapotranspiration (ETactual) has traditionally been separated into a “green” 
and “blue” component, referring to the origin of the used water: precipitation or irrigation water, 
respectively. Early studies estimated blue and/or green water use at country, continental or global 
levels [2–5]. Later studies made global estimates of consumptive water use for a number of specific 
crops per country [6–9]. At a global scale and higher spatial resolution, Alcamo et al. [10] 
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estimated blue water withdrawal and Döll and Siebert [11] the irrigation water requirements. More 
recently, a few studies estimated global green and blue water consumption in crop production at 
spatial resolutions of 30 and 5 arc minutes [12–20]. 

The aforementioned approaches used hydrological models with the objective of estimating 
actual evapotranspiration from croplands per crop type, distinguishing between blue and green 
ETactual. However, the input used and the type of output produced, differed. The results were 
calculated and presented at different spatial resolutions and covered different time periods. The 
inputs of the methods were national statistics, reports, climatic databases and crop-related maps. 
The spatial and temporal resolutions of the source data were coarse in some cases, especially where 
extracted from statistical databases, implying in some cases the use of disaggregation techniques. 

Bearing this in mind, remote sensing techniques may improve the estimates of blue and green 
water use since they provide global coverage, varied temporal and spatial resolution and broad 
spectral information. This allows characterizing the physical processes and monitoring crops in 
appropriate space and time scales. In this context, Romaguera et al. [21,22] included the use of 
remote sensing data and proposed a methodology to estimate blue water evapotranspiration (ETb) 
that could benefit from the remote sensing advantages. This method allows the estimation of ETb at 
different time scales, i.e., hourly, daily, monthly and yearly, which is supposedly an improvement 
with respect to the existing static maps for monitoring irrigation practice. At regional scale, other 
works used remote sensing to evaluate irrigation performance [23–25]. 

Moreover, in recent years, several studies have approached the problem of global irrigation 
mapping, using national statistical data as input [26,27] or making use of spectral and temporal 
remote sensing data to perform classifications and obtain irrigated areas [28,29]. These methods 
provide information about areas equipped for irrigation, about crop dominance and irrigation 
source, and about existence or absence of irrigation, but none of the methods quantifies the actual 
amount of water received by the crops through irrigation, or blue water. In particular, the source of 
irrigation water was determined by Thenkabail et al. [29,30] in their Global Irrigated Area Map 
(GIAM), where irrigated areas were classified as a function of three sources of irrigation supply: 
surface water, groundwater, and conjunctive use (due to usage of stored rain water). 

The objective of this paper is to apply the remote sensing method by Romaguera et al. [21,22] 
and obtain ETb values at relevant time scales for water management purposes, that is at monthly 
and country/province scale, as well as to show preliminary results and the potential of exploiting 
these data when combined with the source of irrigation water, from the aforementioned GIAM 
map. The regions and period of study are the Horn of Africa (period 2010–2012) and the Chinese 
province of Sichuan (period 2001–2010), both affected by a drought event during the period of 
study, but with differences in terms of water control and storage infrastructure.  

Section 2 describes the method and datasets used in this paper and Section 3 the selected study 
areas. Section 4 includes ETb time series per source of irrigation water in the study areas and a 
sensitivity analysis. Section 5 discusses relevant aspects of the application tackled in this research 
and finally the conclusions of this work are summarized. 
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2. Method and Data 

The method to estimate ETb used in this paper is described in Romaguera et al. [21,22]. It is 
based on the calculation of the differences in actual evapotranspiration (ETactual) given by remotely 
sensed ETactual data (RS–ET in the following) and the Global Land Data Assimilation System 
(GLDAS) ETactual model simulations (GLDAS–ET in the following). The former included the 
effect of irrigation where relevant, whereas irrigation was not incorporated in GLDAS simulations. 
A bias between the two datasets is calculated in rain-fed croplands, where no irrigation is supplied, 
and then used to correct the whole dataset, obtaining ETb as:  

biasETETb −Δ=  (1) 

where ET is the difference between RS–ET and GLDAS–ET and bias is this difference calculated 
only in rain-fed croplands. The idea behind this formulation relies on the fact that GLDAS–ET 
products do not account for extra water supply in form of irrigation in the land surface model [31], 
whereas RS–ET are based on the energy balance and therefore are able to observe full ETactual from 
croplands, including all sources of water. Therefore, the difference between the two datasets 
provides information about the water used in the form of irrigation. 

2.1. Bias Estimation 

Since the two datasets present systematic discrepancies, rain-fed croplands were used to 
calculate a reference bias to correct for this effect and isolate the differences due to irrigation 
practices. The GlobCover land cover map (version 2.3) [32] was used to identify rain-fed croplands. 

Previous literature showed temporal and spatial variations of this bias [21,33]. For example, in 
Europe the bias amplitude changed through the year roughly resembling a positive concave curve. 
The maximum amplitude value reached up to 3 mm/day and occurred in the months of spring and 
summer in northern latitudes [21]. In that paper, the spatial variability of the bias was taken into 
account by performing a classification of the study area and calculating the spatial mean bias per 
class and per month. Normalized Difference Vegetation Index (NDVI) and satellite observation angle 
were the input parameters for the classification. The validity of the bias curves obtained was carried 
out by analyzing their representativeness in bigger areas, providing satisfactory results in majority classes. 

The classification scheme was improved in recent literature [22] by testing different 
classification approaches and proposing a new set of input parameters. This allowed to obtain a 
better differentiation of the bias curves, reduced the standard deviation of the data and captured the 
expected variability of the maximum bias. 

Therefore, following Romaguera et al. [22], in the present work a yearly classification of every 
study area was carried out with the k-means algorithm and using the following parameters as 
inputs: a yearly climatic indicator (CI) based on net radiation and precipitation, the maximum value 
of monthly ETactual along the year (ETmmax), the month where the ETmmax occurs (t_ETmmax) and the 
maximum NDVI (NDVImax) in the year of interest. The optimal number of classes was calculated 
using a scattering distance (SD) quality index [34]. 
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For every year and area, a classification was generated and biases per month were obtained by 
spatially averaging the bias obtained in rain-fed croplands per class. Finally, Equation (1) was used 
in the study areas to calculate the total ETb per month and the GIAM map to assign the source of 
irrigation water per pixel. 

2.2. Data 

Table 1 describes the main characteristics of the datasets used in the present work which are 
detailed in the following paragraphs. 

Remote sensing ETactual estimates were obtained from two sources: the Meteosat Second 
Generation products provided by the Land Surface Analysis–Satellite Applications Facility  
(LSA–SAF) [35] for the region of Africa (period 2010–2012) and the dataset produced by  
Chen et al. [36,37] over China during the years 2001 till 2010. The periods of study and areas were 
(partially) determined by the availability of data at the moment of writing this paper. The inclusion 
of the region of China allowed the analysis of a longer time series of data, which was limited in the 
Meteosat products over Africa, and also allowed the estimation of ETb in a region with more 
extensive irrigation practices and infrastructure, which is China. 

Table 1. Specification of the datasets used in the present work. 

Data Source Spatial Coverage Spatial Resolution Temporal Resolution Details 

ETactual 

LSA–SAF * MSG disk ** 3 km at nadir daily 

Availability of data: 
Europe: Jan. 2007–present 
The rest: Sept. 2009–present 
Used for the study area in Africa 

Chen et al. [36,37] 
(SEBS model) 

China 0.1° monthly 
Availability of data: 
Years 2001–2010 
Used for the study area in China 

GLDAS (Noah model) Global 0.25° (~30 km at equator) monthly 
Availability of data: 
March 2000–present 

Land Cover MERIS  Global 300 m Static 
GlobCover map calculated in 
year 2009 

Rn, P GLDAS (Noah model) Global 0.25° (~30 km at equator) monthly 
Availability of data: 
February 2000–present 

NDVI 
AVHRR Africa 1 km monthly 

Generated by IGBP 
Period: April 1992–March 1993 
Used for the study area in Africa 

SPOT–VEG Global 1 km monthly Used for the study area in China 

Irrigation source GIAM Global 10 km Static 

Data: Type of irrigation  
Primary data used: 
—AVHRR from 1997–1999 
—TOA NDVI from 1982–2000 

* List of acronyms: LSA–SAF (Land Surface Analysis–Satellite Applications Facility); MSG (Meteosat 
Second Generation); GLDAS (Global Land Data Assimilation System); SEBS (Surface Energy Balance 
System); MERIS (Medium Resolution Imaging Spectrometer); Rn (Net Radiation); P (Precipitation); 
Normalized Difference Vegetation Index (NDVI); AVHRR (Advanced Very High Resolution 
Radiometer); IGBP (International Geosphere–Biosphere Programme Data); SPOT–VEG (Satellite Pour 
l’Observation de la Terre–Vegetation); GIAM (Global Irrigated Area Map); TOA (Top Of Atmosphere); 
** Meteosat disk covers latitudes between 60° and +60° and longitudes between 60° to +60°. 
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The MSG ETactual model is a simplified Soil–Vegetation–Atmosphere Transfer (SVAT) scheme 
that uses as input a combination of remote sensed data and atmospheric model outputs. The inputs 
based on remote sensing are LSA–SAF products of albedo, and downwelling short and longwave 
radiation fluxes [35,38].The dataset from Chen et al. [37] is based on the Surface Energy Balance 
System (SEBS) [39], which uses multi-sensor remote sensing based NDVI, albedo, surface 
emissivity and temperature. 

Simulated ETactual data with the Noah model [40] were acquired from the Global Land Data 
Assimilation System (GLDAS) [41]. The Noah land surface model is a 1D column model that 
describes the physical processes of the soil, vegetation and snowpack. The inputs of this model are 
satellite and ground-based observational data. The calculation of the latent (LE) and sensible (H) 
heat flux start from potential LE (LEp), based on the soil moisture, atmosphere states, and 
vegetation characteristics. Constrains to LEp are applied resulting in the actual LE and ETactual. 

The GlobCover land cover map (version 2.3) [32] was used to identify rain-fed croplands. This 
map is based on classification techniques which use the surface reflectance observed by the 
Medium Resolution Imaging Spectrometer (MERIS). 

The inputs for the classification of the study areas were obtained from the following sources. 
Net radiation (Rn) (as a sum of longwave and shortwave radiation) and precipitation (P) (as a sum 
of rainfall and snowfall rate) were also taken from the GLDAS dataset. These were used to 
calculate the climatic indicator as the ratio LP/Rn, where L(J/kg) is the latent heat of vaporization, P 
(mm) is the annual precipitation and Rn (W/m2) is the annual net radiation. The monthly ETactual 
used for the classification was taken from GLDAS. Data on NDVI was obtained from the Advanced 
Very High Resolution Radiometer (AVHRR) delivered by the Deutsches Zentrum für Luft- und 
Raumfahrt (DLR) and from the Satellite Pour l’Observation de la Terre (SPOT–Vegetation). These 
NDVI sources were selected as inputs for the classification because they are the ones used for the 
RS–ET estimations, and their values may influence the differences/biases between RS–ET and 
model simulations. 

The Global Irrigated Area Map by Thenkabail et al. [30] was used to identify the source of 
irrigation, i.e., surface water, groundwater or conjunctive use. This map shows global irrigated 
areas and classifies them depending on the type of irrigation. The “surface water” (SW) class 
includes major and medium irrigation from surface water based on large and medium dams. The 
“groundwater” (GW) class describes minor irrigation from groundwater, small reservoirs and 
tanks. The “conjunctive use” (CU) class comprises predominately minor irrigation from 
groundwater, small reservoirs and tanks, but with some mix of surface water irrigation from major 
reservoirs. This map was generated using classification techniques whose input data were remote 
sensing based reflectivity, NDVI, rainfall, tree cover and elevation, combined with ground data and 
Google Earth imagery. 

From a technical point of view the inputs were resampled to a common grid and projection, and 
the resolution of remote sensing data was chosen to calculate the ETb results, that is 0.030 and 0.1 
degree for the Horn of Africa and the Chinese region respectively. The separation of SW, GW and 
CU was carried out at the resolution of the GIAM map, which is 10 km. The temporal resolution of 
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a month was chosen in this analysis. In order to homogenize the data, daily ETactual values from 
MSG were monthly aggregated. 

3. Study Areas 

Based on the availability of remote sensing data, two study areas, both affected by a drought 
event during the period of study, but with differences in terms of water control/storage infrastructure 
were selected. First, the Horn of Africa was affected by a drought in the year 2011 [42,43]. In 
particular, Ethiopia is considered a water scarce country. Despite the abundance of water in some 
parts of the country (central, western and southwestern parts), the distribution and availability of 
water is erratic both in space and time due to the lack of water control/storage infrastructures [44]. 
Strategies have been implemented at national level to improve in this direction, like the Irrigation 
and Drainage Project [45]. 

Secondly, China is a country with abundant water resources where dams and reservoirs are 
numerous, built for hydropower generation, flood control, irrigation and drought mitigation. In 
particular, in the province of Sichuan we can find the Dujiangyan irrigation project [46], a more 
than 2000 year old system that was developed to prevent flood and nowadays is crucial in draining 
off flood water, irrigating farms and provide water resources for more than 50 cities in the 
province. This region suffered a severe drought in 2006 [47,48]. 

Figure 1 shows the GIAM map, location and size of the study areas. For the sake of comparison, 
the neighboring countries/provinces were included in the study area, which computed a total of 
1,680,000 and 875,000 km2 in the regions of East Africa and Southwest of China respectively. 
Based on this map, irrigated areas were scarce in the Horn of Africa, mainly concentrated in the 
center and middle-north of Ethiopia, middle-west and southeast of Kenya and in the coastal areas 
of south Somalia. In Sichuan province, irrigated areas were abundant in the eastern part and they 
were scattered in Yunnan province. 

Figure 1. Global Irrigated Area Map (GIAM) map in the regions of study (a) Horn of 
Africa and (b) Southwest of China, where SW, GW and CU stand for surface water, 
groundwater and conjunctive use, respectively. 

 
(a) (b) 
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4. Results 

4.1. Bias Curves 

The spatial distribution of the bias was obtained monthly for every study area (not shown here). 
These computed a total of 36 images in the Horn of Africa, and 120 in the Chinese area, for the 
time periods analyzed (three and 10 years respectively). After the classification of the study areas, 
the monthly bias value was obtained per class by averaging the monthly biases in rain-fed croplands.  

Figure 2 shows the inter-annual variability of the resulting bias curves. The yearly classification 
of the study areas provided the following number of classes: six (for 2010 and 2011) and eight (for 
2012) in the Horn of Africa; six (for 2001, 2003, 2004, 2006), seven (for 2002, 2005, 2007, 2008, 
2009) and eight (for 2010) in the Chinese area. In general, largest biases and similar patterns over 
the years were found in the Southwest of China, with amplitudes between 80 and 80 mm/month. 
The largest biases were found for the years 2005 and 2010, and the lowest biases for 2009. 

The bias curves found in the Horn of Africa show no clear pattern over the years for some 
classes, which may be explained by the relatively low number of rain-fed pixels used to obtain 
them. This is the case of classes 1 and 2 in 2010 and class 1 in 2011, where the number of pixels 
used is one or two orders of magnitude lower than the rest of the classes. Moreover, in some classes 
the absence of a clear centered peak as observed in China is related to the incoming solar radiation 
patterns at these latitudes (between 5°S and 15°N). At the equator, maximum radiation values are 
found at the equinoxes (March and September) and a single maximum is developed with increasing 
latitude. In this paper, the biases were calculated as spatial averages per class, therefore the 
combination of values from different latitudes may partially explain the fluctuations of the curves.  

For all classes, the magnitude of the biases in the African region is relatively modest compared 
to the ones found in the region of China. As a reference, we provide the average monthly ETactual in 
both regions for the year 2010 obtained from the GLDAS–ET data set. The value was computed 
over all land pixels shown in Figure 1. The average monthly ETactual ranged from 25–60 mm/month 
and from 25–120 mm/month in the African and Chinese regions respectively. These differences 
can partly explain the magnitude of the amplitudes found in the bias curves. 

4.2. Monthly ETb and Source of Irrigation 

This section contains preliminary results of the application of the ETb method in the study areas. 
Monthly ETb was calculated for the Horn of Africa for the period 2010 till 2012 and for the 
Southwest of China for the years 2001–2010. Monthly ETb values were extracted from the pixels 
labeled by GIAM as irrigated and assigned to the corresponding source of irrigation (SW, GW, 
CU). Pixel values were converted to volumes (Mm3/month) by using the pixel area and then 
aggregated per country/province. Figure 3 shows the first results in the study areas where the 
monthly values of precipitation aggregated over the evaluated pixels are also included. 
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Figure 2. Spatial mean bias per class for (a) Horn of Africa and (b) Southwest of China 
study areas, obtained in rain-fed croplands as the difference of remotely sensed  
ETactual data (RS–ET) and Global Land Data Assimilation System ETactual model 
simulations (GLDAS–ET). (Note that the discrete ETb monthly values are connected to 
ease visualization). 

(a) (b) 

The temporal signature of ETb allows seasonal patterns to be distinguished within a year and 
also inter-annual ETb dynamics, especially in the long series of ETb obtained in the provinces of 
China. The ETb pattern in Yunnan province was found to be relatively regular, contrary to what 
was observed in Sichuan, with some ETb peaks in the years 2006 and 2007 and lower general 
values in 2009 and 2010. 

Precipitation showed a significant decrease in the year 2011 in Ethiopia and in the year 2006 in 
Sichuan province. This corresponds to drought periods as explained in Section 3.  

In Ethiopia, a general decrease of ETb was observed in 2011, which points at a lower amount of 
irrigation water used. In particular, total ETb was estimated to decrease from 21 Mm3/month in the  
wet year 2010 to 10 Mm3/month in the dry year 2011. Moreover, in this period an increase of 
groundwater use at the expense of surface water use was observed, which is consistent with the 
report by Hendrix [49]. Despite the existence of the drought, national crop production did not 
appear to be significantly affected as reported by the Food and Agriculture Organization of the 
United Nations [50]. This might be explained by the fact that the drought mainly affected the east 
and south of the country and the majority of croplands use rain-fed production systems and are 
located in the other part of the country [51]. 

A decrease of ETb in half of the year 2011 was also observed in Kenya. The precipitation values 
in this period were only slightly lower than for other years. The drought in Kenya affected the 
northeastern regions of the country and therefore there is no significant effect on the precipitation 
in irrigated areas. The study of longer time series of data would allow inter-annual variability, 
trends and anomalies to be analyzed with a better statistical representation, and therefore have a 
better interpretation of these patterns. 
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Figure 3. Monthly ETb per source of irrigation water (surface water, SW; groundwater, 
GW; conjunctive use, CU) in irrigated areas of (a) Ethiopia and (b) Kenya (years 2010–
2012) and the Chinese provinces of (c) Sichuan and (d) Yunnan (years 2001–2010). 
The figure also shows monthly precipitation (Note that the discrete ETb monthly values 
are connected to ease visualization). 

(a) (b) 

(c) (d) 

In Sichuan province, the values of ETb in the dry year were of similar magnitude to the previous 
years or increased, especially in the month of August, which points to a higher amount of irrigation 
water used. In particular, ETb was estimated at 200 Mm3/month in the wet year 2005 and 400 
Mm3/month in the dry year 2006. The National Bureau of Statistics of China [52] reported that total 
water resources in Sichuan decreased by 26% in 2006 with respect to the average of other reported 
years (2004–2012), but still with a high value of 187 billion m3. Moreover, the grain production in 
2006 was only 10% lower than in year 2005. These two facts suggest that water was still available 
for irrigation and it was used when precipitation decreased. 

In order to better interpret the results obtained, Figure 4 shows the input RS–ET and  
GLDAS–ET values in August 2006, where a peak of ETb is found in Sichuan. In this study area the 
range of RS–ET values was double the ones given by the land surface model in GLDAS–ET, with 
values up to 330 mm/month. In particular, a hot spot was found in Sichuan province near the 
border with Chongqing province with low values of GLDAS–ET. There is a high density of 
irrigated agriculture in this area (see Figure 1), so that the aggregated results per province are 
highly influenced by these values. Figure 4 also includes the temporal series of these two ETactual 
estimates in a pixel of the hot spot, where the significant decrease of GLDAS–ET outputs in the 
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year 2006 can be observed. Due to the lack of precipitation, the ETactual model outputs given by the 
land surface model are lower. 

Figure 4. Monthly ETactual in the study area of Southwest of China in August 2006 
obtained from (a) the remote sensing estimates with the SEBS method and (b) GLDAS 
data; and (c) 10 years of monthly ETactual in the identified hot spot (30°34 N, 105°19 E). 
(Note that the discrete monthly values are connected to ease visualization). 

 

In Yunnan province, in which there was no significant dry year during the period of analysis, the 
total ETb curves show relatively regular patterns and values ten times smaller than in Sichuan. The 
use of the three sources of irrigation water is observed in this province with a major use of  
surface water. 

In general, the preliminary results shown in Figure 3 also reveal features that could not be 
explained, like the ETb peaks in Sichuan in 2007 or low ETb values in 2009 and 2010. Although 
further research is needed to fully understand the patterns, this paper exemplifies the potential 
exploitation of the temporal dimension of ETb, combined with the source of irrigation water, which 
could be useful for water management purposes. 

The analysis of data in longer periods of time showed an advantage when interpreting and better 
understanding the ETb patterns. Bearing this in mind, the following section about sensitivity was 
elaborated using the case study of Sichuan province (years 2001–2010). 

4.3. Sensitivity to Bias Curve Assignment  

Since the principal aspect of the ETb method used is the definition of the bias curves, this 
section analyzes whether the ETb estimates are sensitive to the bias assignment. Figure 5 shows the 
monthly ETb results obtained in the province of Sichuan in the irrigated pixels as indicated in 
Figure 1. Four cases were considered depending on the bias assigned per month: (i) maximum of 
all classes; (ii) minimum of all classes; (iii) bias assigned based on the classification and (iv) mean 
bias calculated in all rain-fed croplands when no classes are considered.  
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Figure 5. ETb obtained in the province of Sichuan using the maximum, minimum, 
assigned-per-class and mean bias. 

 

All four cases show maximum values of ETb in the years 2006 and 2007. However, inter-annual 
variability was found to be sensitive to the selection of the bias. ETb presented low monthly values  
in most of the study period when using the maximum bias, whereas higher values and relatively 
regular patterns were obtained with the minimum bias. The curves obtained with the mean and 
assigned-per-class bias showed intermediate values, with ETb in general lower in the former case. 
In this context, Romaguera et al. [22] showed that the bias estimation was improved when using 
different classes instead of a single mean bias obtained for all rain-fed pixels. Therefore, despite the 
possible ETb similarities between these two cases, the classification approach is preferred to 
evaluate ETb. 

5. Discussion  

This paper illustrates preliminary results of the potential of using a remote sensing based method 
for obtaining time series of blue water evapotranspiration and combining it with the source of 
irrigation to monitor irrigation practices. The details and drawbacks of the models and data used 
were discussed in Romaguera et al. [21,22] and Thenkabail et al. [30]. 

The outputs produced in this paper need to be understood as preliminary examples of 
application. A better understanding of the ETactual inputs used would be required in order to obtain 
concluding outcomes. Regarding the bias, Section 4.3 showed how the ETb estimates were 
sensitive to the bias assignment. 

Accuracies, Errors and Uncertainties 

The uncertainties in ETactual estimation from remote sensing and the land surface modelling 
played an important role in the total ETb uncertainty. Kalma et al. [53] showed that remote sensing 
data provided typically relative errors of 15%–30% in ETactual estimation. In the case of the 
GLDAS products, the ETactual accuracy was not sufficiently evaluated in the literature, although 
some estimates exist. Fang et al. [54] reported the uncertainty in GLDAS–ET estimates by 
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continent as equivalent heights of water based on 1979–2007 outputs from the four models 
included in the system. The climatology values of ETactual were 550 mm/year in Africa and 430 
mm/year in Asia, with an uncertainty of ±60 mm/year in both cases. Besides, the definition of the 
bias curves has a standard deviation associated to the spatial averaging of the values per class. 
Despite the lack of detailed information about the GLDAS–ET accuracies, the aforementioned 
quantities were used (not shown here) to obtain the contributions of these three aspects to the total 
uncertainty by using the first order Taylor series expansion, where the covariance terms were 
neglected (inputs are independent) and linearity was assumed. A typical daily ETactual rate of 5 mm, 
a 30% in error of RS–ET, an average uncertainty of 5 mm/month in GLDAS–ET, and a bias curve 
in the Sichuan province were assumed. It was found that the error in RS–ET was the major 
contributor (50%–95%), modulated by the error of the bias which oscillated in time from around 
5%–50%. The contribution of the GLDAS–ET inaccuracy was negligible. Increasing daily ETactual 
rates resulted in higher relative contribution of RS–ET, as expected, while decreasing the role of 
the bias, and being insignificant, the GLDAS–ET impact. Decreasing daily ETactual rates resulted in 
higher relative contribution of GLDAS–ET, with a maximum of 20% when a low value of daily 
ETactual was considered (0.1 mm/day). 

These values served as an indication of the relative importance of RS–ET, GLDAS–ET and the 
bias, to the total uncertainty of ETb. In the case of irrigated areas, ETactual values are expected to be 
high, and therefore the role of the bias accuracy is less significant. However a better estimate of the 
GLDAS–ET uncertainty is required to properly quantify the different contributions. 

Moreover, the accuracy of the static GlobCover and GIAM maps may decrease in time. These 
are used in the method to define rain-fed areas and to assign the type of irrigation respectively. 
Therefore, they are also a source of uncertainty. 

The results in this paper were aggregated per country/province, which may be appropriate for 
regional planning purposes. However, specific spatial features may be lost in big areas due to the 
aggregation process, such as multiple cropping practices. Therefore, analysis at different spatial 
scales is recommended when examining particular features. Besides, the spatial resolution of the 
input data may be a limitation in heterogeneous areas, and therefore scaling techniques [55,56] are 
advised for understanding the sub-pixel variability. 

In order to obtain concluding results about the application shown in this paper, long time series 
of data are desired to be able to properly analyze trends, and possible anomalies in the climatology. 
From the point of view of the land surface models, global data can be obtained for long time 
periods, from the year 1970 until the present for the Noah model in GLDAS. However, remote 
sensing ETactual outputs are more limited in time and space and depend a lot on the geometry of 
observation, technical characteristics, and lifetime of the sensors on board the satellites. In this 
context, Mu et al. [57] provided global ETactual products every eight days at 1 km resolution 
between the years 2001–2010. Their algorithm is based on the Penman-Monteith equation using 
daily meteorological reanalysis data and 8-day remotely sensed vegetation property dynamics from 
the Moderate–Resolution Imaging Spectroradiometer (MODIS) as inputs. 

In general terms, the interpretation of the results regarding irrigation practices bears an 
uncertainty related to the multiple situations that can be found in reality. Water availability and 
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decisions taken by the farmers to irrigate or not and how much, are factors that influence the 
results. However, in the face of an extreme event like a drought, the results obtained in the case 
studies of the present paper indicated the possibility of identifying and explaining the episode in 
terms of irrigated water. 

Finally, compared with the existing literature about ETb given by Liu and Yang [16] and 
Mekonnen and Hoekstra [19], the method applied in this paper is innovative in two aspects: first it 
uses physically based remote sensing data instead of statistical data, and second it provides a better 
temporal resolution, more suitable for water management applications. Moreover, from an 
implementation point of view the method has a reasonably straightforward application procedure. 

6. Conclusions  

This paper illustrates the potential of using remote sensing and simulated actual 
evapotranspiration (ETactual) time series combined with an existing “type of irrigation” map, to 
monitor irrigation practice. It provides new tools to obtain monthly blue evapotranspiration (ETb) 
and shows the application in two relevant study areas: the Horn of Africa and the Chinese province 
of Sichuan, both affected by a drought event during the periods of analysis, but with differences in 
terms of water control and storage infrastructure. Further, monthly ETb are subdivided into the 
source of irrigation water: surface water, groundwater and conjunctive use, which relates to the 
availability of water resources. 

The preliminary results show seasonal and inter-annual patterns in ETb. In the face of an 
extreme event like a drought, changes in ETb (i.e., irrigated water) can be identified, as well as the 
relative use of different sources of irrigation water. In Ethiopia, total ETb is estimated to decrease 
from 21 Mm3/month in the wet year 2010 to 10 Mm3/month in the dry year 2011, while ETb from 
groundwater increased; in Sichuan ETb is estimated at 200 Mm3/month in the wet year 2005 and 
400 Mm3/month in the dry year 2006; these very different patterns of drought response, as found 
for the two locations, are qualitatively consistent with the literature. However, further research is 
needed to fully understand the whole of the temporal patterns found. 

The research also reveals methodological and data limitations. The results in Sichuan are found 
to be dependent on the bias assignment required in the method. Moreover, particular spatial ETactual 
patterns are encountered in the input data. Finally, the use of longer time series of data for better 
interpretation of the results is recommended. 

The application shown in this paper is innovative compared to similar literature in two aspects: 
first it uses physically based remote sensing data instead of statistical data, and second it provides a 
better temporal resolution, more suitable for water management applications. This paper constitutes 
a starting point for global temporal ETb analysis, applying an innovative remote sensing based 
approach and further research will contribute to the achievement of more concluding and operative 
results. In the field of water management, the approach has potential to assess the existence of 
irrigation, the source of irrigation water, the duration and variability in time, at pixel and country 
scales, and could be especially useful to monitor irrigation practice during periods of drought.  
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FAO-56 Dual Model Combined with Multi-Sensor Remote 
Sensing for Regional Evapotranspiration Estimations 

Rim Amri, Mehrez Zribi, Zohra Lili-Chabaane, Camille Szczypta, Jean Christophe Calvet 
and Gilles Boulet 

Abstract: The main goal of this study is to evaluate the potential of the FAO-56 dual technique for 
the estimation of regional evapotranspiration (ET) and its constituent components (crop 
transpiration and soil evaporation), for two classes of vegetation (olives trees and cereals) in the 
semi-arid region of the Kairouan plain in central Tunisia. The proposed approach combines the 
FAO-56 technique with remote sensing (optical and microwave), not only for vegetation 
characterization, as proposed in other studies but also for the estimation of soil evaporation, 
through the use of satellite moisture products. Since it is difficult to use ground flux measurements 
to validate remotely sensed data at regional scales, comparisons were made with the land surface 
model ISBA-A-gs which is a physical SVAT (Soil–Vegetation–Atmosphere Transfer) model, an 
operational tool developed by Météo-France. It is thus shown that good results can be obtained 
with this relatively simple approach, based on the FAO-56 technique combined with remote 
sensing, to retrieve temporal variations of ET. The approach proposed for the daily mapping of 
evapotranspiration at 1 km resolution is approved in two steps, for the period between 1991 and 
2007. In an initial step, the ISBA-A-gs soil moisture outputs are compared with ERS/WSC 
products. Then, the output of the FAO-56 technique is compared with the output generated by the 
SVAT ISBA-A-gs model. 

Reprinted from Remote Sens. Cite as: Amri, R.; Zribi, M.; Lili-Chabaane, Z.; Szczypta, C.;  
Calvet, J.C.; Boulet, G. FAO-56 Dual Model Combined with Multi-Sensor Remote Sensing for 
Regional Evapotranspiration Estimations. Remote Sens. 2014, 6, 5387-5406. 

1. Introduction 

In semi-arid regions, and the Mediterranean basin in particular, agricultural productivity and 
water resources regularly suffer from serious crises, as a consequence of limited levels of 
precipitation, combined with the occurrence of long periods of drought, which are typical features of 
the Mediterranean climate [1]. In this context, the accurate monitoring of vegetation cover and 
hydric stress can be a valuable tool, especially for areas which rely on rainfed agriculture in  
water-limited environments. A second challenge for the well-adapted management of this 
agriculture is to accurately determine the level of evapotranspiration, in order to quantify the soil 
water stock. In recent years, a variety of physical surface models have been proposed at regional 
and global scales [2]. The most accurate of these are the SVAT models [3–6]. 

On the other hand, the initial FAO-56 model is the most commonly used and practical approach 
for the estimation of crop water requirements and local scale evapotranspiration [7], and is based 
on a simple combination of a reference evapotranspiration value (ET0) and crop coefficients. The 
FAO-56 dual model distinguishes between the respective contributions of plant transpiration (Kcb) 
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and soil evaporation (Ke) [8]. In recent years, various attempts have been made to combine the 
latter model with remote sensing data for operational applications [9–14]. These studies were 
motivated, in particular, by the need to retrieve vegetation cover dynamics from vegetation indices 
derived from optical satellite observations [9,10,15,16]. Most applications of this model are related 
to the study of irrigated areas, for the effective planning and use of irrigation water. 

In recent years, sustained scientific activity based on the interpretation of remotely sensed  
data has made it possible to develop various methodologies for the characterization of the  
spatio-temporal variability of continental surface parameters (vegetation characteristics and soil 
moisture), on both local and global scales. In the case of vegetation cover, various indices based on 
the use of optical data have been proposed for the retrieval of vegetation characteristics (e.g., leaf 
area index, vegetation fraction, NDVI (Normalized Difference Vegetation Index), etc.). The NDVI 
is the most commonly used index, and is expressed by the ratio: NDVI = (RNIR  RRED)/(RNIR 
+ RRED), where RNIR is the near-infrared (NIR) reflectance and RRED is the red reflectance. 
This index is sensitive to the presence of green vegetation [17,18], and has been used in various 
studies dealing with the estimation of the potential photosynthetic activity of vegetation [10,19–22]. 
As a consequence of its formulation, the NDVI is able to robustly characterize green vegetation, 
despite varying atmospheric conditions in the red and NIR bands [23,24]. Nevertheless, in the case 
of high levels of vegetation density, the NDVI can suffer from saturation effects [25], which bias 
the estimated levels of evapotranspiration. In semi-arid regions, this behavior is rarely observed. 
Several different methodologies based on the interpretation of microwave sensor data have also 
been developed for the determination of soil moisture [26–31]. A large number of studies have 
demonstrated the potential of low-resolution spaceborne (active microwave) scatterometers for land 
surface characterization, in particular for the estimation of soil moisture [32–37]. 

In this context, the aim of the present study is to illustrate the ability of the FAO-56 dual 
approach to estimate evapotranspiration at regional scales, without making use of complex physical 
surface models requiring large quantities of input data. In an initial step, the effectiveness of the 
FAO-56 dual approach, which is commonly used for irrigation management [9,10], is evaluated. 
Then, the combination of this model with data generated by remote sensing is considered, not only 
for the study of vegetation as proposed in other studies [9–12,14], but also for the purposes of soil 
moisture analysis. Under such conditions, the spatio-temporal variations of these two fundamental 
parameters can be taken into account in the transpiration and evaporation estimations. 

In Section 2, the studied site and the remotely sensed and ground databases are presented. In 
Section 3, the FAO dual model is introduced, and the concurrent use of remotely sensed data is 
discussed. In Section 4, the proposed approach is compared with the outputs of a physical SVAT 
model: the ISBA-A-gs. Finally, the authors’ conclusions are presented in Section 5. 

2. Database and Processing 

2.1. Studied Site 

The studied site is the Kairouan plain, which is situated in central Tunisia (35°–35°45 N;  
9°30 –10°15 E) (Figure 1) and is characterized by a semi-arid climate [38]. The average annual 
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rainfall is approximately 300 mm per year, with a rainy season lasting from October to May. The 
rainfall patterns in this semi-arid area are highly variable in time and space. The mean daily 
temperature in Kairouan City ranges between a minimum of 10.7 °C in January and a maximum of 
28.6 °C in August, with a mean value equal to 19.2 °C. The mean annual potential 
evapotranspiration (Penman) is close to 1600 mm. The landscape has no relief and land use is 
dominated by agriculture, with two main types of vegetation cover: annual agriculture and olive 
trees. A ground campaign carried out over more than 20 test fields revealed that the mean soil 
texture is composed of 45% sand, 32% clay and 23% loam. Sandy soils are more commonly 
observed in the areas characterized by olive tree cultivation. 

Figure 1. Satellite imagery of the studied area, indicating the locations of the rainfall 
and climate network stations present on the Kairouan plain. 

 

2.2. Satellite Products 

2.2.1. ERS/WSC Moisture Products 

The scatterometers carried by ESA’s dual ERS satellites (launched in 1991 and 1995, the dual  
ERS satellite mission was finally decommissioned in September 2011) are operated in the C-band  
(5.3 GHz) in the vertical polarization. Over land, the measured radar backscatter coefficient is 
sensitive to surface parameters (soil moisture, surface roughness, vegetation characteristics) and the 
emission characteristics of the radar (incidence angle, polarization and frequency). A change 
detection approach developed by the Institute of Photogrammetry and Remote Sensing (IPF), 
Vienna University of Technology (TU-Wien), has been applied to the estimation of soil moisture, 
based on radar measurements [31,32,39,40]. The proposed moisture products have been validated 
in different regions of the globe, such as the Canadian Prairies [32], the Iberian Peninsula [35], 
Western Africa [34,41], France [37] and Australia [42]. The TU-Wien algorithm is based on 
scaling of the normalized backscattering coefficient to a value corresponding to a 40° incidence 
angle, lying between the lowest value which occurs during the driest conditions, and the highest 
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value which occurs during the wettest conditions. The retrieved moisture index, referred to as the 
“surface soil moisture” (SSM), can range between 0% and 100% and represents the water content 
present in the first 5 cm of soil. Based on the interpretation of cells approximately 50 × 50 km in 
size, the TU-Wien products have a grid spacing of 25 km, and a temporal resolution of 
approximately two to three measurements per week. In order to compare SSM values with ground 
measurements on the same study site [43] or modeled surface moisture values, these products were 
converted to physical units of m3·m 3, using the method described by Pellarin et al. [36]. The  
TU-Wien Soil Water Index (SWI), which provides the water content along a 1 m deep profile, is 
derived from the SSM values measured on different successive dates. These products have already 
been validated and used in various hydrological studies [29,35–37,44]. Amri et al. [43] discussed the 
validation of ERS and ASCAT products, through the use of continuous thetaprobe recordings of 
ground soil moisture in the Kairouan plain. These authors revealed a strong correlation between the 
ground measurements recorded between 2010 and 2011, and satellite products corresponding to the 
same period, with an RMSE (the root mean square error) equal to 0.06 cm3/cm3 for surface 
moisture and 0.039 cm3/cm3 for the SWI. 

2.2.2. SPOT-VGT NDVI Products 

The 10-day synthesis (S10) products derived from SPOT-VGT (SPOT-VEGETATION) data are 
available at full resolution (1 km), and include 10-day NDVI data [45]. For these products,  
top-of-atmosphere corrections were applied using the SMAC (Simplified Method for Atmospheric 
Corrections) algorithm [46], which corrects for molecular and aerosol scattering, water vapor, 
ozone and other gas absorption effects. The parameters taken into account in the atmospheric 
corrections are the aerosol optical depth (AOD), the atmospheric water vapor and ozone, and a 
Digital Elevation Model used for atmospheric pressure estimation [47]. The water vapor parameter 
is obtained once every six hours from Météo-France with a 1.5° × 1.5° grid cell resolution. 
Although the AOD is currently retrieved from B0 data (blue spectral band of SPOT-VGT,  
0.43–0.47 M), combined with the NDVI [47], prior to 2001 it was a static data set which varied as 
a function of latitude only. Different systematic errors (misregistration of the different channels, 
calibration of the linear array detectors for each spectral band) are corrected in the final P product, 
which is re-sampled to a Plate carrée geographic projection. The S10 products are available [48]. 

2.3. Ground Measurements 

2.3.1. Precipitation Data 

Precipitation estimations were based on a network of 30 rain gauges, distributed over the entire 
site (Figure 1). The Inverse Distance Weighting (IDW) interpolation algorithm was used to derive 
daily precipitation maps. This algorithm estimates values at non-sampled points, by computing the 
weighted average of data observed at nearby points [49,50]. The landscape is mainly flat in the 
validation areas, and there is no mountainous terrain able to influence the spatial distribution of 
rainfall. The precipitation time series and the NDVI data set are thus available with a spatial 
resolution of 1 km. 
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2.3.2. Meteorological Data 

Meteorological data, including air temperature, humidity, wind speed, net radiation and  
rainfall measurements, have been recorded over the last 20 years by an automatic weather station 
located in the Kairouan Plain. Daily averaged climatic parameters were computed in order to 
determine the daily reference evapotranspiration ET0 (mm/day), in accordance with the FAO-56 
Penman-Monteith parameterization [51]. 

The global radiation was determined from Météosat data [52] retrieved from the SoDa server  
(Solar radiation Databases for environment [53]), established by the Mines ParisTech graduate 
school. In this database, global radiation data is available from January 1985 to December 2005, at 
temporal intervals of one day and a spatial resolution of 20 km. 

2.4. Land Use Mapping 

Low spatial resolution SPOT Vegetation NDVI images were used to map the land into three 
characteristic classes: olive trees, annual agriculture and pastures. It is important to note that these 
classes were labeled: “Olive trees”, “Annual Agriculture” corresponding to cereals and “Pastures”. 
Later, for the purposes of estimating regional evapotranspiration, only two principal classes were 
considered: Olive trees and annual agriculture. 

In recent years, several approaches have focused on the disaggregation of low resolution mixed 
pixels in different land cover classes [54]. A linear mixing theory is generally used, in which it is 
assumed that the reflectance (respectively NDVI) of a mixed pixel is given by the sum of the mean 
reflectance (respectively NDVI) values of the different land cover classes within the pixel, 
weighted by their corresponding fractional cover. The identification of typical NDVI profiles, 
representative of each of these land cover classes, is the first step in the disaggregation 
methodology. These pixels are identified by making use of information related to the class 
composition of each pixel, retrieved from a high-resolution land-cover map. 

The general expression is given by Equation (1), and the RMS of this quantity is given by  
Equation (2):  

 (1)

 (2)

where: Yi(t) is the average signal observed at pixel i and time t, and is estimated from the NDVI 
time series produced by SPOT-VGT; ij is the area occupied by the jth class in the ith pixel: the 
unknown term in Equation (1); j(t) is the signal assigned to the jth class at time t, and is calculated 
for each class (pure pixels are considered) from the NDVI time series produced by SPOT-VGT; i 
is the error term; p is the number of classes, T is the number of observations, i is the pixel index, 
and j is the class index. 
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The error term defined in Equation (2) is the square of the differences between the NDVI 
signature assigned to each class, and the NDVI profile observed in the ith pixel. 

Disaggregation techniques are designed to estimate the proportion (between 0 and 1) of specific 
classes occurring within each pixel. The result is a certain number of fraction images, each 
corresponding to the relevant land-cover class. While this information describes the composition of 
the class, it does not provide any indication as to how the classes are spatially distributed within the 
pixel. The outcome is thus quite different from that obtained with conventional classification 
algorithms, in which a single “crisp” land cover map, containing all classes, is produced. Figure 2 
shows a land-use map for two classes. The pixels having low proportions (dark blue areas) for all 3 
classes of land use correspond to areas covered by water (sebkhas, dams). These areas are masked 
in all of the maps used in the following analysis. 

Figure 2. Land use map for the 2008–2009 agricultural season at 1 km spatial 
resolution, showing (on a scale ranging from 0–1) the proportion of coverage 
represented by each of three different classes of vegetation present in this area:  
(a) annual agriculture; (b) pastures; (c) olive trees. 

 
(a) (b) (c) 

3. Proposed Approach for the Retrieval of Evapotranspiration 

3.1. Description of the Basic FAO-56 Model 

The algorithm used in the present study is based on the FAO-56 dual crop coefficient model 
developed by [7], which describes the relationship between crop evapotranspiration under  
non-standard conditions (ET) and a reference level of evapotranspiration (ET0). The crop coefficient 
(Kc) is separated into two components: the basal crop coefficient (Kcb) and the soil water 
evaporation coefficient (Ke):  

( ) 0*s cb eET K K K ET= ⋅ +  (3)

where ET0 is estimated at 24 h intervals using the FAO Penman-Monteith equation [7]; Kcb: the 
basal crop coefficient, KS is the stress coefficient and Ke: the soil water evaporation coefficient. 
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The daily reference evapotranspiration ET0 is determined with a spatial resolution of 20 km, 
allowing ET0 maps to be derived at daily intervals, for each growing season (from September of  
one year to August of the following year), with the same resolution as the SoDa data. The 
cumulative annual ET0 values are consistent with the observed levels of ET in this region 
(approximately 1600 mm/year). 

3.2. Application with a Dual Vegetation Cover 

In the present study, two types of vegetation cover are considered for each pixel: cereals (annual 
agriculture) and olive trees. For each pixel, the evapotranspiration ET under non-standard 
conditions is estimated using:  

( )( )[ ] ( )( )[ ][ ] 0eocsocbocoliveeccsccbcccereals ET*Kf1KKfFrKf1KKfFrET −−−−−− −++−+=  (4)

where: fc is the fractional cover; Fr is the cover percentage per pixel, for each class, KS is the stress 
coefficient and the indices “o” and “c” denote the cereal and olive tree classes, respectively. 

The parameters (Kcb and Ke) used in Equation (4) are derived from the remotely sensed  
SPOT-VGT NDVI index, and ERS/WSC soil moisture products, respectively. 

Ks describes the effect of water stress on crop transpiration. 

TAW)p1(
DTAWK r

s −
−=  (5)

Dr: root zone depletion (mm). The equation number 86 of the FAO No. 56 guidelines [7] is used 
to calculate this parameter. 

TAW: Total available soil water in the root zone (mm), estimated using the equation number 82 
of the FAO No. 56 guidelines [7]. 

p: fraction of TAW that a crop can extract from the root zone without suffering water stress. 
This parameter is derived for each class from table 22 of the FAO No. 56 guidelines [7]. 

3.2.1. Computing the Values of Kcb and fc 

Further details of the proposed annual agriculture (cereals) estimations can be found in  
Er-raki et al. [9]. The calibrations made at the Tensift site in Morocco Er-raki et al. [9] were also 
applied to the studied site, due to their similarities in terms of climate and cereal yields. 

Kcb is defined as:  

Kcb = 1.07 × 1 −
NDVI − NDVImin

NDVImax − NDVImin

 
  

 
  

0.84
0.54

 

 

 
 
 

 

 

 
 
  

(6)

where NDVImin and NDVImax are the minimum and maximum values of the NDVI associated with 
bare soil and dense vegetation, respectively. The values retrieved from the SPOT-VGT NDVI 
index time series, used in the present study, are 0.1 and 0.6. 

fc is the vegetation cover fraction defined by Er-raki et al. [9]:  

fc = 1.18 * NDVI − NDVI min( ) (7)
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In the case of olive trees, the crop coefficients proposed in the FAO Bulletin No. 56 [7] for the 
estimation of the water requirements of olive trees are not applicable to the present case study, due 
to the low percentage of coverage corresponding to this culture. In a recent study, Testi, et al. [55] 
established a relationship between the ET and the cover fraction, which is used to determine the 
value of Kcb applicable in the present study. 

In the case of olive trees, a tree spacing of approximately 20 m and a tree diameter of 
approximately 4 m area were considered. This leads to a value of fc value equal to 8%. 

3.2.2. Computation of the Parameter Ke 

In recent years, various different approaches have been proposed to relate soil resistance to soil 
moisture [56–58]. Chanzy and Bruckler [57] proposed an empirical method relating soil 
evaporation to soil moisture and climate demand, for different types of soil texture. In arid and 
semi-arid regions, the soil evaporation which occurs after a rainfall event is a process of major 
importance, whenever the local agriculture is characterized by a low density vegetation cover. 
When this term is determined accurately, it allows a reliable estimation to be made of the stock of 
water available for use by the vegetation. In this section, a simple approach is used for the 
estimation of soil evaporation, which is equal to the ET0 whenever the surface layer is saturated. A 
method developed by Merlin et al. [58] was used, allowing soil evaporation to be related to the 
surface soil moisture (0–5 cm) estimated from radar satellite measurements. The parameter Ke can 
then be written as:  

( )
P

LeK ⋅⋅−= max/cos
2
1

2
1 θθπ  For L  max (8)

where L is the soil water content in the soil layer of thickness L, max is the soil moisture at 
saturation, and P is a parameter given by the following expression:  

31

1
32

1
B

LE
L

LLAP p−+=
 

(9)

In this expression, L1 is the thinnest layer of soil represented (here 0–5 cm), and A3 (unit-less) 
and B3 (W·m 2) are a priori the two best-fit parameters, which depend on the soil’s texture  
and structure. 

max was estimated from continuous ground thetaprobe measurements, acquired over a period of 
three years. 

L was considered to be equal to the remotely sensed surface soil moisture products produced by 
the ERS and ASCAT scatterometers. As described above, these products were converted to 
physical units of m3·m 3, using the method described by Pellarin et al. [36]. 

Soil evaporation is assumed to reach its maximum value in the case of saturated soils, with a 
value defined as being equal to ET0, which is close to zero for very dry surfaces. 
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3.3. Description of the ISBA Model Used to Evaluate the FAO Dual Approach 

Since it would not be realistic to use local flux measurements made at the field scale to validate 
the FAO-56 dual approach for applications involving low spatial resolution data (0.5° × 0.5°, i.e., 
regional scale), the validation used in the present study was based on comparisons made with the 
operational ISBA model developed by Météo France. This model uses the force-restore method 
proposed by Deardoff [59] to compute the corresponding variations in soil surface energy and 
water budget [5]. The model uses three layers to represent the soil’s hydrology: the upper surface 
layer, the root-zone layer and the deep soil layer [60], and water interception storage and snow 
pack variations are also taken into account [61]. Within each grid, the heterogeneity of infiltration, 
precipitation, topography and vegetation are accounted for, and the conversion of precipitation into 
runoff over saturated surfaces is based on the TOPMODE approach [62,63]. Within each grid cell, 
the heterogeneity of land cover and soil depths is taken into account through the use of a tile 
approach, in which the cell is divided into a series of sub-grid patches. For each tile in a grid cell, 
distinct energy and water budgets are calculated. The multiplicative model developed by Jarvis [64] 
is used to determine the stomatal resistance of the vegetation. ISBA-A-gs is a variant of the ISBA 
model [5], which takes photosynthesis and its coupling with leaf-level stomatal conductance into 
account, and in which a biochemical soil–vegetation–atmosphere transfer representation is used to 
model the diurnal cycle of photosynthesis [65]. Then, the canopy conductance to water vapor is 
computed by integrating the photosynthesis model over the vegetation canopy, using a one-dimensional 
radiative transfer model within the vegetation. The canopy conductance is then used in the original 
ISBA model [66] to calculate plant transpiration. The other components of evapotranspiration (soil 
evaporation and evaporation of intercepted rain) are simulated in the same manner as in the original 
ISBA model. In addition to meteorological variables and surface temperature, soil evaporation 
depends on surface soil moisture and the vegetation coverage fraction. The interception reservoir is 
assumed to evaporate at the potential rate and depends on the LAI and the vegetation coverage 
fraction. The ECOCLIMAP look-up tables are used to generate the LAI (Leaf Area Index) inputs 
used by the ISBA model. ISBA-A-gs also implements a new representation for soil moisture stress, 
in which two different drought responses can be applied: one is used for herbaceous vegetation [67], 
and the other for forests [68]. 

4. ISBA-A-gs Model Inter-Comparison with the FAO-56 Approach 

4.1. Analysis of the ISBA-A-gs Soil Moisture Output 

In Figure 3, the ERS/WSC soil moistures, validated by Amri et al. [43] over the studied site  
and described in Section 2.2, are compared with the output generated by the ISBA model, and are 
plotted together with the precipitation time series. Three statistical parameters: RMSE (the root 
mean square error), R2 (the coefficient of determination), and the bias are used to compare the ERS 
and ISBA datasets. 
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Figure 3. Inter-comparison between ISBA-A-gs soil moisture outputs and ERS/WSC 
products during the period from 1991–2007 (no data for 2001–2003): (a) surface soil 
moisture (SSM); (b) Soil Water Index (SWI) corresponding to the root zone moisture. 

 

 

The satellite data products are compared with two ISBA-A-gs outputs; the modeled top layer  
(the first five centimeters of soil) and the soil moisture profiles (down to a depth of 100 cm), for the  
16-year period from 1991–2007. It should be noted that the ERS measurements and the 
corresponding remotely sensed moisture products are not available for the period from 2001–2003. 
As can be seen in Figure 3a, local variations in the ERS surface moisture products are not 
completely retrieved by the ISBA outputs. In fact, the latter corresponds to the first 10 centimeters 
of soil, which are less strongly influenced by atmospheric conditions (rain, wind and solar 
radiation) than the first five centimeters of soil, which affect the ERS/WSC radar measurements. 
Despite the strong heterogeneity of the moisture profile in the first centimeters, the statistics of the 
resulting comparison are good: RMSE = 0.04 m3·m 3, bias = 0.02, and R2 = 0.52. 

In Figure 3b, the monthly SWI ISBA-A-gs outputs (0.5 m depth) are compared with the ERS 
estimations, showing that these two products have a good degree of coherence. In general, a delay 
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of several days is observed between significant rainfall events and the corresponding increase in 
water soil content, determined using the ERS measurements. 

The statistics of the compared data are good: RMSE equal to 0.03 m3·m 3, R2 = 0.5, and a low 
bias equal to 0.008. A change in behavior can be observed in 1997: before this date, less than one 
data point (determined using the ERS1 scatterometer only) was available per week, from which the 
algorithm could be developed. After 1997, the ERS1 and ERS2 scatterometers were both able to 
provide a combined two to three data points per week, for use in the SWI estimations, and there is 
thus a difference in the product’s accuracy between these two periods. Although the SWI itself is 
not used in the evaporation estimation, comparisons made with this product are used to validate the 
ISBA-A-gs model over the studied site. 

4.2. Inter-Comparison between ISBA-A-gs and FAO-56 Approaches 

Figure 4 compares the ISBA and FAO model evapotranspiration simulations over the studied 
area, for a single ISBA pixel with a spatial resolution corresponding to 0.5° in latitude and 0.5° in 
longitude, for the periods between 1998 and 2000 and between 2004 and 2005. These two products 
are compared only on dates for which ERS/WSC-based determinations of the Ke evaporation 
parameter are available. The two products are found to be in good agreement, and the statistical 
parameters derived from the FAO simulation are reasonable: RMSE = 0.36 mm/day, with a 
correlation R2 = 0.55. The discrepancies observed at some points in this figure are related, in 
particular, to the soil evaporation component, and to the occurrence (or not) of a precipitation 
event: all of the data points characterized by a strong discrepancy between the two models involve 
a precipitation event, which was taken into account by one of the models, but not the other. This is 
mainly due to the input used in the ISBA-Ags model. In the case of the present study, the ISBA 
model was driven by the ERA-Interim atmospheric forcing, corresponding to the ERA-Interim 
global ECMWF atmospheric reanalysis, projected onto a 0.5° grid. Since precipitation is 
underestimated by the latter product [69], the monthly Global Precipitation Climatology Centre 
(GPCC) precipitation product was used to correct the precipitation bias in the 3-hourly  
ERA-Interim estimates [70]. The availability of a smaller number of GPCC precipitation 
observations for northern Africa, than for Europe, thus provides an explanation for the reduced 
robustness of the Tunisian precipitation series. The retrieved levels of FAO approach are in 
coherency with other studies realized over other semi-arid regions [9,71]. 

The FAO model values for the ISBA pixel (0.5° × 0.5°) correspond to the mean value of 1 km 
pixel estimations. In order to evaluate the scale effect, the FAO model is computed directly at the 
ISBA pixel scale, by considering the mean NDVI values at this scale, for vegetation fractions and 
Kcb estimations, and for two types of vegetation cover (olive trees and cereals). The 
intercomparison between FAO model levels, calculated at two different scales, reveals an rms error 
of 0.2 mm/day and a correlation coefficient equal to 0.85, for the period (1991–2007). This result 
indicates that the FAO dual model has only a limited scaling effect. 
  



277 
 

 

Figure 4. Evapotranspiration (ET) simulated by the ISBA-A-gs model as a function of 
the ET levels simulated by the FAO-56 model over a single ISBA pixel, during the 
period from 1991–2007, and on dates when remotely sensed ERS/WSC observations  
were recorded. 

 

Figure 5a compares the ET simulated by the ISBA-A-gs model with that predicted by the FAO-56 
model, for the 1998–1999 agricultural season during which the total precipitation was 
approximately 280 mm. A good degree of consistency is observed for the results obtained with 
these two models. However, on some dates, large differences are observed between FAO-56 
estimates and ISBA-A-gs outputs, probably as a consequence of the rainfall events taken into 
account in the ISBA-A-gs model. The statistical parameters derived from the simulation are 
reasonable: RMSE equal to 0.39 mm/day, correlation strength given by R2 = 0.55, and a low bias 
equal to 0.009 mm/day. 

The second example, illustrated in Figure 5b, corresponds to the 1999–2000 agricultural season, 
characterized by a relatively dry growing season and a total annual precipitation of approximately  
250 mm. During this season, the results given by the two models are found to be more consistent.  
The FAO-56 model retrieves almost the same trends as the ISBA-A-gs model, for both high and 
low values of ET. The statistical parameters from the comparison are good: RMSE = 0.25 mm/day, 
correlation strength R2 = 0.61, and a low bias equal to 0.01. This comparison shows that the models 
are more consistent during the driest period of the season (from June to August). This is mainly due 
to the very limited number of rainfall events at this time of the year. Under these conditions, it is 
easier for the FAO dual model to retrieve the evaporation dynamics corresponding to small 
temporal variations in moisture, caused for example by a single rainfall event during a period  
of drought. 
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Figure 5. Inter-comparison between ET outputs from the FAO-56 and ISBA-A-gs 
models, on dates when remotely sensed ERS/WSC observations were recorded: (a) 
1998–1999 agricultural season; (b) 1999–2000 agricultural season. 

 

 

For both of these agricultural seasons, the two models are found to be well correlated with the 
rainfall events, with a clear increase in the level of evapotranspiration following strong 
precipitation events. However, some distinct inconsistencies can be observed between the two 
simulations. As an example, the FAO-56 model retrieves a high level of ET, due to a 10 mm 
precipitation event in April 1999, which was not detected by the ISBA-A-gs simulations. 
Conversely, in May 2000, a rise in the level of ET is predicted by the ISBA-A-gs model, whereas 
this is not predicted by the FAO-56 model. Prior to the May 2000 peak observed in the ISBA-A-gs 
model, one small (1 mm) rainfall event occurred, which probably had a very small influence on the 
real level of ET. It is thus likely that the discrepancy observed between the two models results from 
an exaggeration of this event, at the precipitation input of the ISBA-A-gs model. 

Finally, the cumulative seasonal water requirement maps for the 1998–1999, 1999–2000 and  
2004–2005 agricultural seasons, estimated by the FAO-56 dual crop coefficient model combined 
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with satellite data, are shown in Figure 6. It should be noted that these maps are well matched with 
the land-use maps. As an example, during the 1998–1999 agricultural season the water 
requirements were slightly greater for annual crops (400 mm) than for olive trees (200 mm). The 
very low ET areas generally correspond to olive trees with a low vegetation cover fraction, as can 
be seen in Figure 2. All of the areas covered by water (dams, sebkhas) were masked, and were not 
taken into account in the ET calculations. 

By comparing the water requirements of annual crops with the average annual rainfall in the 
Kairouan plain (300 mm), an initial estimation is made of the hydric deficit, which should be offset 
through the use of irrigation. 

Figure 6. Total annual evapotranspiration maps: (a) 1998–1999 agricultural season;  
(b) 1999–2000 agricultural season; (c) 2004–2005 agricultural season. 

 

5. Conclusions 

The FAO-56 dual approach, which is commonly used for irrigation management, is applied to  
the simulation of evapotranspiration at the regional scale. This is combined with remotely sensed, 
multi-sensor data. Two main types of vegetation cover, cereals and olive trees, are considered in 
this analysis. The vegetation fractions represented by these two classes of vegetation are retrieved by 
means of a multi-temporal classification of SPOT-VGT time series images. The evapotranspiration is 
computed over the studied area for two vegetation classes, weighted by their respective  
vegetation fractions. 

The cereal crop coefficient and vegetation fraction estimations are based on NDVI SPOT-VGT 
data, through the use of an empirical relationship. Soil evaporation is estimated by a simple 
approach developed by Merlin, et al. [58] established between this quantity and surface soil 
moisture, using ERS/WSC radar products developed by the TU-Wien. Saturated soils are 
associated with the highest level of evaporation, and the driest soils have approximately  
zero evaporation. 

The ISBA-A-gs SVAT model is compared to the FAO approach, using simulations covering the 
period between 1991 and 2007. The ISBA soil moisture outputs are validated using ERS/WSC 
products developed by the TU-Wien. A good degree of coherence is observed for surface moisture, 
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with an RMSE equal to 0.04 m3·m 3, R2 equal to 0.52 and a bias equal to 0.002. The soil moisture 
profiles are also in good agreement, with an RMSE equal to 0.03 m3·m 3, R2 equal to 0.5, and a bias 
equal to 0.008. When the ISBA and FAO models are compared for the same study area, they are 
found to be strongly coherent. In the case of daily comparisons, an RMSE equal to 0.36 mm/day is 
found, which is low by comparison with the mean ET values, estimated at approximately 2 
mm/day. The soil moisture profiles are well correlated, with R2 equal to 0.5. These results illustrate 
the strong potential of this simple approach, in which the FAO-56 model is combined with several 
satellite observations (optical and microwaves), to retrieve evapotranspiration levels particularly  
in semi-arid regions. 
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Validation of Global Evapotranspiration Product (MOD16) 
using Flux Tower Data in the African Savanna, South Africa 

Abel Ramoelo, Nobuhle Majozi, Renaud Mathieu, Nebo Jovanovic, Alecia Nickless and  
Sebinasi Dzikiti 

Abstract: Globally, water is an important resource required for the survival of human beings. 
Water is a scarce resource in the semi-arid environments, including South Africa. In South Africa, 
several studies have quantified evapotranspiration (ET) in different ecosystems at a local scale. 
Accurate spatially explicit information on ET is rare in the country mainly due to lack of 
appropriate tools. In recent years, a remote sensing ET product from the MODerate Resolution 
Imaging Spectrometer (MOD16) has been developed. However, its accuracy is not known in South 
African ecosystems. The objective of this study was to validate the MOD16 ET product using data 
from two eddy covariance flux towers, namely; Skukuza and Malopeni installed in a savanna and 
woodland ecosystem within the Kruger National Park, South Africa. Eight day cumulative ET data 
from the flux towers was calculated to coincide with the eight day MOD16 products over a period 
of 10 years from 2000 to 2010. The Skukuza flux tower results showed inconsistent comparisons 
with MOD16 ET. The Malopeni site achieved a poorer comparison with MOD16 ET compared to 
the Skukuza, and due to a shorter measurement period, data validation was performed for 2009 
only. The inconsistent comparison of MOD16 and flux tower-based ET can be attributed to, among 
other things, the parameterization of the Penman-Monteith model, flux tower measurement errors, 
and flux tower footprint vs. MODIS pixel. MOD16 is important for global inference of ET, but for 
use in South Africa’s integrated water management, a locally parameterized and improved product 
should be developed. 

Reprinted from Remote Sens. Cite as: Ramoelo, A.; Majozi, N.; Mathieu, R.; Jovanovic, N.;  
Nickless, A.; Dzikiti, S. Validation of Global Evapotranspiration Product (MOD16) using Flux 
Tower Data in the African Savanna, South Africa. Remote Sens. 2014, 6, 7406-7423. 

1. Introduction 

Globally, water is an important resource required for the daily sustenance and survival of human 
beings. Water is crucial to facilitate livelihoods and economic growth, e.g., vital for the industrial 
and agricultural sector. Today, irrigated agriculture is the main fresh water user, accounting for 
about 70% of the water from lakes, rivers and ground aquifers [1]. In South Africa, almost 50% of 
the available surface water resource usage is attributed to agricultural activities. In essence, South 
Africa is a semi-arid environment, with evaporation rates exceeding the rates of precipitation by a 
considerable margin [2]. Therefore, it is crucial to develop methods or tools to quantify water use 
and availability (e.g., evapotranspiration, ET) over large spatial scales in order to inform decision 
makers on sustainable utilization and management of this resource. For example, the program by 
the South African Department of Water Affairs (DWA) to verify and validate country’s water use 
is critical [2] for water use license purposes, which requires information on ET, water use and river 
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flows. This program is also linked to the legal requirement on the sustainable utilization of water 
resources outlined in the National Water Act (Act 36 of 1998). 

ET is the second most important element of the hydrological cycle after precipitation because it 
facilitates the continuation of precipitation by replacing the vapor lost through condensation [3].  
ET is listed as one of 48 observation priorities of water societal benefit area (Water SBA) by the 
Group on Earth Observation; see GEO [4,5]. GEO is an intergovernmental organization working to 
improve availability, access and use of earth observation to benefit society [5]. ET is also crucial 
for the transportation of minerals and nutrients required for plant growth; creates a beneficial 
cooling process to plant canopies in many climates; and influences the Earth’s energy and water 
balance because of the direct association with latent heat flux (LE). ET consumes large amounts of 
energy during the conversion of liquid water to vapor, hence playing an important role in 
hydrology, agriculture, climatology and meteorology. Accurate estimates of ET contribute to 
improved quantification of the catchment water balance and in the facilitation of decision making 
for sustainable water resource management [6–8].  

ET is a difficult component to measure, especially in arid and semi-arid regions where the 
magnitude of the ET flux is relatively smaller than in wetter regions. In these areas, plants are 
prone to water stress and are adapted accordingly to prolonged dry conditions. ET is highly 
variable over space and time, depending on landscape heterogeneity, topography, climate, 
vegetation type, soil properties, management and environmental constraints [7,9]. The conventional 
point-based ET estimation methods do not capture large spatial scale variability of ET and are very 
difficult to obtain due to time and cost constraints. These methods include (i) direct measurements 
with porometry and lysimeters [10]; (ii) atmospheric measurements, including energy balance and 
micrometeorological techniques like Bowen ratio [11], eddy covariance [12], scintillometry [13], as 
well as methods based on weather data, for example; used for the calculation of the  
Penman-Monteith reference grass evapotranspiration (ETo) and crop coefficient [9]; (iii) soil 
measurements [14] and the application of the soil water balance. The in situ estimation of ET using 
the above techniques was successful in a number of agricultural and natural environments within 
South Africa, e.g., natural vegetation [15], wetlands [13] and crops [16]. 

Remote sensing-based techniques have the capability to estimate spatial and temporal variation 
of ET from catchment to global scales. Several studies reviewed different remote sensing 
techniques used to estimate ET [17–19]. They are classified into; 

• empirical methods that involve the use of statistically-derived relationships between ET and 
vegetation indices such as the normalized difference vegetation index (NDVI) or the 
enhanced vegetation index (EVI) [20–25],  

• residual methods of surface energy balance (single- and dual-source models) [8,26] which 
include the Surface Energy Balance Algorithm over Land (SEBAL) [27,28], Surface 
Energy Balance System (SEBS) [8,29,30] and Mapping EvapoTranspiration at high 
Resolution with Internalized Calibration (METRIC) [6,31,32],  

• physically-based methods that involve the application of the combination of  
Penman-Monteith [7,33,34] and Priestley-Taylor types of equations [35–39], and 
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• Data assimilation methods adjoined to the heat diffusion equation [40] and through the 
radiometric surface temperature sequences [41]. 

Various remote sensing-based ET estimation algorithms (e.g., SEBS, SEBAL and METRIC) 
have been partially evaluated in South Africa [42]. Although estimates of net radiation and ET were 
accurate, the soil and sensible heat fluxes were more complex and challenging to determine. 
Furthermore, Sun et al. [43] used local flux tower data (Skukuza) to evaluate a remote  
sensing-based continental ET product at 3 km resolution, which was developed by combining data 
from the MODIS sensor and SEVIRI sensor onboard the geostationary-orbiting MSG satellite. 
Although the results were reasonable during the wet season, low correlations were observed during 
the dry season, due to factors such as, the spatial scale differences between the satellite sensor and 
flux tower observations. In South Africa, SEBAL was used to provide information on water use 
efficiency of irrigated crops, including grapes, deciduous fruits, sugarcane, and grain crops [29]. A 
recent study by Gibson et al. [29], discussed the use of SEBS in South Africa for various 
agricultural and natural systems, and finally recommended the validation of existing global ET 
products in South Africa to encourage their use. 

Remote sensing-based global estimates of ET have been produced by different algorithms.  
For example, the MODerate Resolution Imaging Spectroradiometer (MODIS) MOD16 [7,34], and 
the EUMETSAT MSG ET product [43]. The MOD16 ET product has a spatial resolution of 1 km 
and is available on an eight-day, monthly and yearly basis. The EUMETSAT MSG ET product is 
available at 3 km spatial resolution every 30 min or daily. These products have been calibrated and 
validated mainly in the Northern hemisphere, with sites located in North and South America, 
Europe, Asia and sometimes Australia. For instance, Cleugh et al. [33] applied the Penman-Monteith 
algorithm and MODIS data to estimate ET for the Australian continent. Mu et al. [7,34] modified 
this algorithm and used flux tower data from Ameriflux stations to validate the global MOD16 
product. Kim et al. [44] later validated the global product using Asiaflux stations. Jia et al. [36] 
evaluated spatiotemporal MODIS ET product in the Hai river basin. Inaccuracies, such as over- or 
underestimation, and no relationship were observed between the flux tower and MOD16 ET 
estimates in the above publications. Errors or uncertainties are assumed to be caused by 
misclassification of landcover types from the global MODIS land cover product, scaling from flux 
tower to landscape, and algorithm limitations. Accurate classification of land cover type is critical 
for ET estimation. In South Africa, the first attempt to evaluate the MOD16 ET was done by 
Jovanovic et al. [45], using historical in situ ET measurements. Jovanovic et al. [45] found that the 
MOD16 method underestimated ET, but the in situ data collected was not sufficient to evaluate 
remote sensing based products. Most of this in situ ET data were for small fields, not sufficient to 
cover a 1 km × 1 km pixel. There is a need to evaluate global remote sensing products again at long 
term monitoring sites in South Africa.  

The main objective of this study is to evaluate the MOD16 global ET product using eddy 
covariance flux tower-derived ET in the savanna and woodland biome in the Kruger National Park, 
South Africa. Thirty-minute latent heat fluxes (LE) were acquired from the CARBOAFRICA 
project for Skukuza and Malopeni towers, and converted to daily ET. The flux tower-derived ET 
was then summed to an eight-day ET corresponding to the MOD16 ET values for comparison.  
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2. Materials and Methods 

The historical flux tower data records from two sites in the Kruger National Park were used.  
The flux tower data were preprocessed to acquire daily, eight-day and monthly ET. The measured 
ET from the flux tower was then compared to the modelled MOD16 global ET product. We used 
basic statistical metrics, including the coefficient of determination, root mean square error and bias, 
to assess MOD16 ET against measured ET. 

2.1. Study Area and Flux Tower Instrument  

Two eddy covariance flux tower sites, Skukuza and Malopeni, were selected (Figure 1). From 
2000 to 2005, the Skukuza flux tower was equipped with a closed path gas analyser for carbon 
dioxide and water, but from 2006 this changed to a Licor Li7500 open path gas analyser with a 
Campbell Scientific CSAT sonic anemometer. The Malopeni flux tower is equipped with a Licor 
Li7500 gas analyser and a Gill WindMaster Pro sonic anemometer. These flux towers contributed 
to the CARBOAFRICA network, a project which ran from 2007 to 2010, and was designed to 
contribute to the quantification, understanding and prediction of the carbon cycle and energy fluxes 
in Sub-Saharan Africa. Though these two sites are located in Kruger National Park, their localities 
present an interesting contrast in weather, soil, geology and vegetation types. 

Established in 2000, the Skukuza flux tower (25.0197°S, 31.4969°E), lies at 365 m above the 
sea level, in an area with 547 mm/year of mean annual rainfall, which falls between November and 
April [46]. The annual temperature ranges between 14.5 and 29.5 °C. This site lies at the boundary 
of two distinct savanna vegetation types which include broad-leafed Combretum savanna and  
fine-leafed Acacia savanna. These contrasting savanna types occur on soils of differing texture, 
water holding capacity and nutrient levels, and are characterized by different physical structure, 
physiology and phenology [46]. These two savanna types are typical of the southern Kruger 
National Park, and placing the flux tower on the ecotone allows for an integrated measurement of 
the fluxes over these different savanna types.  

The Malopeni flux tower (23.8325°S, 31.2145°E) is located in the northern part of KNP 
approximately 130 km north-west of Skukuza and 12 km from the town of Phalaborwa. The tower 
was established in 2009 on a site dominated by the broad-leaf Colophospermum mopane 
characteristic of a hot and dry savanna, 384 m above the sea level, with a mean annual rainfall of 
472 mm/year [47]. Temperature ranges between 12.4 and 30.5 °C.  
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Figure 1. Study area map showing an insert of South African and Kruger National Park 
boundaries, with projected coordinates. 
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2.2. Flux Tower Data  

To evaluate the global 1 km, eight-day MOD16 ET product, eddy covariance LE data from the 
Skukuza (2000–2010) excluding 2002 and 2006, and Malopeni (2009) flux towers were used.  
LE for 2002 and 2006 were excluded from the analysis, since the measurement years were 
incomplete. The 16 m and 7 m measurement height of Skukuza and Malopeni towers, respectively, 
are adequate to validate the 1 km pixel of MOD16. The size of eddy covariance source area or 
footprint does not only depend on instrument height [48], but also on the wind direction and 
velocity, atmospheric stability and the underlying surface conditions [49]. The source area or 
footprint modelling was not carried out because the location of the flux tower was homogeneous. 
The LE data observed every 30 min were MODIS-driven estimation of terrestrial latent heat flux in 
China based on a modified Priestley-Taylor algorithm converted to daily ET using equations 
presented in Mu et al. [34]. In addition, only reliable 30 min measurements were prioritized, 
exceeding 40 per day. The derived daily ET was further summed over eight days for each year to 
match the MOD16 ET product. Some of the data were excluded from analysis because of 
insufficient ET measurements. The number of the 30 min ET measurements per day (over 40) was 
prioritized in the validation process, to avoid compromising the completeness and reliability of the 
flux tower data. For further analysis, eight day summations were done to create monthly ET for 
Malopeni and Skukuza. 

2.3. MOD16 Global ET Data  

The MOD16 ET product with temporal resolution of eight days and spatial resolution of 1 km,  
were acquired for free from the University of Montana’s Numerical Terradynamic Simulation 
group (ftp://ftp.ntsg.umt.edu/pub/MODIS/NTSG_Products/MOD16/MOD16A2.105_MERRAGMAO/). 
The ET values corresponding to Skukuza from 2000–2010 and 2009 for the Malopeni sites were 
extracted from each pixel of the MOD16 ET images using ArcGIS 10×. The algorithm used to 
derive the MOD16 ET product was modified by Mu et al. [7,34], from Cleugh et al. [33]’s 
Penman-Monteith derived model. 

2.4. Rainfall Data  

The rainfall data sets were collected from the South African Weather Service (SAWS) for 
Skukuza and Phalaborwa rainfall stations, for the dates corresponding to the ET data. Skukuza 
station is approximately 20 km away from the flux tower, while Phalaborwa rainfall station is 
located approximately 10 km away from the Malopeni flux tower. We used rainfall data to interpret 
variability in ET in relation with the wetness conditions in the landscape and the response of 
vegetation to drought and water stress. 

2.5. Data Analysis  

For assessing the relationship between the MOD16 ET and flux tower derived ET, the 
coefficient of determination (R2), root mean square error (RMSE) (Equation (1)), bias (Equation (2)) 
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and percent bias (PBias) (Equation (3)) were used. These statistical techniques were commonly 
used for comparing pairs of variables, e.g., Sun et al. [43]. The R2 was used to determine the 
strength of the relationship between the flux tower measured and the MOD16 modelled ET. Bias, 
on the other hand, is a measure of how a modelled value deviates from the true value, and indicates 
whether there is under- or overestimation, while the percent bias is a percentage of bias relative to 
the observed mean. 

The RMSE, Bias and PBias were computed using the following equations: 
2(FET-MET)

RMSE=
N

 (1)

(MET-FET)
Bias=

N
 (2)

1001( )

BiasPBIAS
FET

N

= ×  (3)

where FET is flux tower ET, MET is MOD16 ET and N number of measurements. Bias and RMSE 
values close to zero signify that the MOD16 ET does not deviate from the true ET value (flux 
tower), indicating that the MOD16 is deemed accurate, while higher values of these statistic 
metrics indicate a high level of inaccuracy. A negative value of bias signifies underestimation, 
while a positive value shows overestimation by the modelled value or MOD16. 

3. Results 

For the Skukuza site, the results show an inconsistent comparison of the flux tower and MOD16 
ET values over a period of time (Table 1; Figure 2). From 2000–2010, excluding 2002 and 2006,  
the highest correlations were obtained in 2005 and 2007 achieving R2 of 0.81 and 0.85, 
respectively. According to the RMSE, 2003 (R2 = 0.58, RMSE = 3.4 mm/8-days) and 2005  
(R2 = 0.81, RMSE = 2 mm/8-days) achieved the lowest values which indicate reasonable accuracy 
of the MOD16 ET product. In the years 2003 and 2005, the relationship is almost 1:1, with 2005 
yielding the lowest RMSE, with the second highest R2. In 2009 and 2010, there is almost a 
complete set of measurements from the flux tower measurements (36 and 44 out 45 eight-day 
periods, respectively). In 2009 and 2010, the validation results (R2 = 0.78 and 0.74, respectively) 
are poorer compared to 2005 and 2007 based on the lower coefficient of determination, as well as 
the higher RMSE (7.39 and 4.3 mm/8-days). In general, Skukuza results showed that there is an 
overestimation of MOD16 ET in 2000 and 2004, with a Bias ranging from 2.80 to 3.08 mm/8-days 
(22.4–33.33% of the observed mean) (Table 1). Whilst, there was evidence of high underestimation 
of MOD16 ET in 2007, 2008, 2009 and 2010 with Bias ranging from 12.1 to 2.6 mm/eight-days 
( 55.7 to 16.44% of the observed mean). The 2003 and 2005 results, specifically, yielded low 
Bias and PBias which confirms the reasonable prediction of MOD16 during these years. 
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Table 1. Validation of MOD16 products using flux tower based evapotranspiration 
(ET) from Skukuza and Malopeni site. 

Flux Tower Year R² RMSE (mm/8-days) Bias (mm/8 day) PBias (%) No. of Measurements *
Skukuza  2000 0.26 5.22 3.08 33.33 18 

2001 0.35 3.60 0.58 6.63 26 
2003 0.58 3.40 0.31 3.02 32 
2004 0.54 8.00 2.85 22.38 37 
2005 0.81 2.00 0.24 3.20 26 
2007 0.85 6.00 12.11 55.71 32 
2008 0.36 7.40 9.47 51.68 34 
2009 0.78 7.39 6.46 29.50 36 
2010 0.74 4.30 2.57 16.44 44 

Malopeni 2009 0.23 3.00 1.18 21.20 35 
* A complete yearly eight days measurements should be 45, as per MOD16 dates. 

Figure 2. Eight day validation results of MOD16 ET using Flux tower data  
(mm/eight-days) in Skukuza (2000–2010). The 1:1 line is depicted by a red color. 
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The eight-day and monthly comparison of the ET in Skukuza between January 2000 and  
December 2010 are shown in Figures 3 and 4. Flux tower ET values are generally higher than 
MOD16, especially during summer months (December–February), when most of the data gaps 
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occur. During winter season (June–August), when the flux record is more complete, MOD16 and 
flux tower ET are closely related. This is a confirmation of the results for Bias and PBias showing 
systematic underestimation of ET by MODIS ET. 

Figure 3. Eight-day time series comparison of MOD16, rainfall and Skukuza flux 
tower derived ET.  
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Figure 4. Monthly time series comparison of MOD16 and Skukuza flux tower  
derived ET. 
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For the Malopeni site, the results show a relatively good RMSE (3 mm/8-days) with 35 out of  
45 eight-day flux tower measurements (Table 1; Figure 5). Malopeni’s validations are similar to 
those of Skukuza in 2001, 2003 and 2005 in terms of RMSE. In terms of the R2-value (0.23), 
Malopeni validation is the lowest. Generally, the results of Malopeni show that MOD16 ET is 
overestimated (Bias = 1.18, PBias = 21% of the observed mean). Figures 6 and 7 show the time 
series visualization of eight-day and monthly ET. In both the eight-day and monthly time series, 
MOD16 ET started to increase around August–September while flux tower ET continues to drop.  

Figure 5. Validation of MOD16 ET using flux tower data (mm/8-days) in Malopeni 
(2009). The 1:1 line is depicted by a red color. 
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Figure 6. Eight-day time series comparison of MOD16 ET, rainfall and Malopeni flux 
tower derived ET. 
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Figure 7. Monthly time series comparison of MOD16, rainfall and Malopeni flux tower 
derived ET. 
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Figure 8 shows all-period data (2000–2010) comparison of eight day and monthly modelled 
MOD16 and measured flux tower ET for Skukuza as well as monthly for Malopeni in 2009.  
Results indicate a poor relationship between modelled MOD16 and measured flux tower ET. Eight-day 
and monthly comparisons yielded R2 of 0.20 and 0.16, respectively. Monthly comparison for 
Malopeni obtained R2 of 0.33, which is relatively higher than the correlation achieved in Skukuza 
site. This could be a consequence of the number of data points used, only one year for Malopeni 
and several years for Skukuza used. Generally, the results show that there is a poor relationship 
between MOD16 and flux tower ET when using all data sets from various dates in each site. 

General trends as depicted by Figures 3 and 4 for Skukuza as well as Figures 6 and 7 for 
Malopeni show that both the flux tower and MODIS ET are to some extent related to rainfall 
variability (see Table 2). Table 2 shows further analysis of the relationship between rainfall and 
flux tower measured as well as MOD16 modelled ET for eight days and monthly data. Generally, 
there is a significant relationship between rainfall and ET. High rainfall peaks are associated with 
high ET values. In addition, missing flux tower ET values are associated with high rainfall or 
towards the end of the rainy season, since the measurements from the flux instruments become 
unreliable when wet. 

Table 2. Analysis for the comparison between ET and rainfall. 

Sites Types Duration R² RMSE(mm/8-days) * P < 0.05 
Skukuza Flux Tower 8day 0.14 8.85 Yes 

Mon 0.01 28.1 No 
MOD16 8day 0.15 9.41 Yes 

    Mon 0.16 33.9 Yes 
Malopeni Flux Tower 8day 0.01 5.02 No 

Mon 0.41 8.99 Yes 
MOD16 8day 0.11 4.60 Yes 

    Mon 0.32 13.77 Yes 
* 95% confidence level, where YES indicates significance; Mon = Monthly. 
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Figure 8. (Top left) indicates all eight day comparisons between MODIS and Flux 
tower ET from 2000 to 2010, (top right) is a monthly comparison for Skukuza from 
2000 to 2010 and (bottom) is a monthly comparison for Malopeni in 2009. 

R² = 0.16

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140
Flux Tower ET (mm/8-days)

R² = 0.33

0

10

20

30

40

50

60

0 20 40 60 80

M
O

D
IS

 E
T 

(m
m

/8
da

ys
)

Flux Tower ET (mm/8-days)

R² = 0.20

0

10

20

30

40

50

60

70

80

0 20 40 60 80

M
O

D
IS

 E
T 

(m
m

/8
-d

ay
s)

 

4. Discussion  

The paper focused on the evaluation of the MOD16 modelled ET product in South African 
savannas using flux tower measured ET. Discrepancies between MOD16 ET and flux tower ET can 
originate from a number of factors, including the parameterization (input data) of the Penman-Monteith 
model, flux tower measurement error, flux tower footprint vs. MODIS pixel size as well as the 
limitations of the algorithm, most of which were identified by Mu et al. [7,34]. The main input data 
for the MODIS ET modelling include MODIS derived global products such as land cover [50], 
albedo, leaf area index (LAI), fraction of photosynthetic absorbed radiation (FPAR) as well as 
meteorological data. These input parameters are coarse scale products, generally poorly or not 
validated in the semi-arid conditions of South Africa, which are likely to generate significant ET 
prediction errors. For instance, MODIS global land cover (MOD12Q1) is a relatively coarse 
product (500 m) which inadequately captures the heterogeneity of savanna ecosystems. Further, the 
global MODIS based LAI or FPAR products have not been validated in Southern Africa. For 
generating the LAI product, an inversion of the physically-based model such as PROSAIL is  
used [51]. However, a backup algorithm based on LAI vs. NDVI relationship is used, when the 
inversion of the physically based model does not provide a solution [51]. In the semi-arid 
environments like South Africa, it is likely that the LAI is based on the latter approach because of 
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the global parameterization. Therefore, it is crucial that the input data such as land cover, FPAR 
and LAI are also assessed and validated in the local context, and improved when needed. This 
exercise will help determine and document error propagation within the MOD16 algorithm and 
support the development of local parameterization of models for an integrated water management 
system. Sensitivity analyses are required to identify the variables which influence the ET output the 
most, and to document the level of agreement between input and output errors.  

Uncertainties associated with the flux tower measurements could have also influenced the 
results. The flux towers have an energy balance closure problem due to the fact that the sum of the 
net radiation and the ground heat flux is sometimes larger than the sum of the turbulent fluxes of 
latent and sensible heat [52]. The energy balance closure problem was not corrected in this paper 
due to the lack of reliable ground heat flux measurement. Flux tower measurements are largely 
influenced by weather conditions. During rainy and stormy days, flux tower sensors either record 
abnormal values or simply do not record any data. The missing flux tower measurements affected 
the cumulative eight-day ET. The advantage of having full eight-day measurements was evident in 
the 2010 datasets, which provided the best overall relationship between the flux tower and MOD16 
ET measurements. The low correlations obtained during the dry season are similarly observed in 
other regions and probably related to a lag in detecting the plant water stress using remote sensing 
techniques [53]. The relationship between rainfall with flux tower and MOD16 ET (Table 2) 
demonstrated that rainfall has a significant influence in the variability of ET, and hence the 
estimation of ET. 

Spatial discrepancy may still exist between the footprint of the flux tower measurements and the 
MODIS pixel. The height of the sensors on a flux tower [48], wind direction or velocity, 
atmospheric stability and underlying surface conditions influence the size of the eddy covariance 
source area [49]. The measurement heights of Skukuza and Malopeni are 16 m and 7 m, 
respectively, thus the footprints of these towers are 1.6 km and 0.7 km, respectively. The Skukuza 
flux tower footprint provides a better match to the MODIS pixel size compared to the Malopeni 
flux tower. In addition, the layout of a single 1 km pixel may not directly match the flux tower 
footprints and may add further spatial discrepancy between the two. Footprint modelling is a means 
to reduce the spatial discrepancy between flux tower measurements and MODIS pixel [36], but this 
was beyond the scope of this study. 

Shortcomings associated with the algorithm itself could have influenced the differences between 
flux tower and MOD16 ET. Mu et al. [34] argued that several physical factors such as  
micro-climate, plant biophysics for site specific species and landscape heterogeneity influence the 
soil surface evaporation and plant transpiration processes, which likely affect MOD16 ET 
estimation accuracy. The MOD16 ET does not account for disturbance history or species 
composition and stand age [7,34], which could also add further uncertainty. The algorithm makes 
the assumption that the stomata close during the night, while studies such as Musselman and 
Minnick [54] have reported stomata opening during the night. This induces underestimation of 
daily ET because of the bias imposed by night time vegetation transpiration [34]. 
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5. Conclusions  

The study evaluated the quality of the MOD16 ET global products. Generally, MOD16 is  
poor and the accuracy is not consistent over a period of time in selected savanna ecosystem sites.  
The quantification of errors associated with the MOD16 ET product in the savanna ecosystem 
presents new findings. The MOD16 product underestimated ET with errors ranging from 2–7 mm/8 
days in the Skukuza site and 3 mm/8 days in the Malopeni site. The evaluation of this product and 
quantified errors has been undertaken exhaustively for the first time in the dry savanna ecosystem, 
especially in South Africa. Rainfall was found to significantly (p < 0.05) influence ET distribution 
and is associated with the missing data. Several factors could have influenced the inconsistency 
between MOD16 and flux tower derived ET, including parameterization of the model, scaling from 
flux tower measurement to a pixel as well as limitations associated with the algorithm used. For 
further evaluation of MOD16, footprint modelling for the eddy covariance source area should be 
done to ensure spatial representativeness or to reduce errors associated with scaling from flux tower 
measurements to a pixel. In addition, the energy balance closure problem should be analyzed, 
provided that there is reliable soil heat flux data. In future, there is a need to develop locally 
parameterized models for consistent estimation and mapping of ET in South Africa. It is important 
to understand existing ET estimation methods in order to improve ET estimation for the South 
African environment. In addition, future activities should also focus on the improvement of the 
estimation accuracy of other remote sensing derived input variables such as LAI, albedo and land 
cover. Accurate and consistent estimation and mapping of ET is crucial for understanding plant or 
crop water use which is an important component of integrated water resource management. 
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Towards the Improvement of Blue Water Evapotranspiration 
Estimates by Combining Remote Sensing and  
Model Simulation 

Mireia Romaguera, Mhd. Suhyb Salama, Maarten S. Krol, Arjen Y. Hoekstra and  
Zhongbo Su 

Abstract: The estimation of evapotranspiration of blue water (ETb) from farmlands, due to 
irrigation, is crucial to improve water management, especially in regions where water resources are 
scarce. Large scale ETb was previously obtained, based on the differences between remote sensing 
derived actual ET and values simulated from the Global Land Data Assimilation System (GLDAS). 
In this paper, we improve on the previous approach by enhancing the classification scheme 
employed so that it represents regions with common hydrometeorological conditions. Bias between 
the two data sets for reference areas (non-irrigated croplands) were identified per class, and used to 
adjust the remote sensing products. Different classifiers were compared and evaluated based on the 
generated bias curves per class and their variability. The results in Europe show that the k-means  
classifier was better suited to identify the bias curves per class, capturing the dynamic range of 
these curves and minimizing their variability within each corresponding class. The method was 
applied in Africa and the classification and bias results were consistent with the findings in Europe. 
The ETb results were compared with existing literature and provided differences up to 50 mm/year in 
Europe, while the comparison in Africa was found to be highly influenced by the assigned cover type 
and the heterogeneity of the pixel. Although further research is needed to fully understand the ETb 
values found, this paper shows a more robust approach to classify and characterize the bias between 
the two sets of ET data. 

Reprinted from Remote Sens. Cite as: Romaguera, M.; Salama, M.S.; Krol, M.S.; Hoekstra, A.Y.; 
Su, Z. Towards the Improvement of Blue Water Evapotranspiration Estimates by Combining 
Remote Sensing and Model Simulation. Remote Sens. 2014, 6, 7026-7049. 

1. Introduction 

Water management in agriculture has been always important, especially in areas where water 
resources are scarce. In this context, it is relevant to distinguish between the sources of the usage: 
water supplied by precipitation (called green water) and irrigation (called blue water). 

Recent studies obtained blue and green water usage in agriculture at large scale, using data from 
national agricultural statistics, reports and climatic databases, and making use of hydrological 
models based on the calculation of actual evapotranspiration (ETactual) [1–4]. Moreover, several 
studies tackled the problem of retrieving global irrigated areas by using national statistics of areas 
equipped for irrigation [5] and by statistically analyzing remote sensing products [6]. 

The potential of using remote sensing data for global studies of green and blue waters use and 
water footprint estimations is discussed in Romaguera et al. [7]. The first approaches to exploit 
those data at large scale are shown in Romaguera et al. [8,9], where the use of the different 
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components of the water cycle is explored, together with the use of land surface models. Other 
works used remote sensing to evaluate irrigation performance at regional scale [10–12]. 

In particular, Romaguera et al. [8] obtained large scale blue water evapotranspiration (ETb), i.e.,  
due to irrigation, based on the differences between remote sensing ETactual obtained from the 
Meteosat Second Generation (MSG) satellites [13] and ETactual values simulated from the Global 
Land Data Assimilation System (GLDAS) [14]. In general, it was found that there was a systematic 
bias between the two datasets in rain-fed pixels and that this difference was variable in time and 
space. The bias amplitude changed along the year, roughly resembling a positive concave curve. 
The maximum amplitude value reached up to 3 mm/day and occurred in the months of spring and 
summer in northern latitudes. The spatial variability of the bias was associated in this paper to 
vegetation characteristics and the remote sensing observation angle. Romaguera et al. [8] 
calculated the bias per day and used three parameters to generate a classification map for Europe to 
discriminate areas with different bias patterns: the maximum value of the NDVI (NDVImax), the 
season where NDVImax occurred, and the viewing zenith angle (VZA) of the sensor on board MSG. 
Thresholds were assigned to distinguish between classes. Recent work from Romaguera et al. [15] 
showed that the classification scheme was not sufficient to describe the variability of the bias 
estimates in the continent of Africa and proposed the inclusion of a climatic indicator in the 
selection of parameters for the classification.  

Similar results in terms of bias between these two datasets were obtained by Ghilain et al. [13] 
and the validation report from the Land Surface Analysis Satellite Applications Facility  
(LSA–SAF) [16], who showed that the bias might be explained by the differences in the inputs of 
incoming solar radiation, the ratio between leaf are index (LAI) and stomatal resistance, and land 
cover type. Yilmaz et al. [17] identified discrepancies in insolation inputs and analyzed differences 
in soil moisture, when comparing these data sets in the region of the Nile River basin.  
Romaguera et al. [8] emphasized that the GLDAS simulations did not account for extra water 
supply due to irrigation and consequently it was expected that they underestimate ETactual during 
the cropping season in irrigated areas. Therefore in the aforementioned work, the differences 
between these two estimates were corrected for the bias in rain–fed croplands, to obtain blue water 
evapotranspiration according to: 

biasETETb −Δ=  (1)

ET is the difference between MSG ETactual (MSG–ET in the following) and GLDAS ETactual 
(GLDAS–ET in the following), and bias is this difference in ETactual calculated in reference areas, 
i.e., rain–fed croplands where irrigation practices are not present. 

In this paper, we intend to solve the drawbacks of the previous methodology by improving  
the classification scheme in order to achieve a better spatial representation of the bias in rain–fed  
croplands, which results in better estimates of ETb. 

First, a better choice of parameters is proposed to represent regions with common 
hydrometeorological conditions, based on three processes at which ETactual estimation may be 
affected, namely vegetation characterization, atmosphere/forcing definition, and land–atmosphere 
interaction. Secondly, an alternative strategy for classification is adopted, based on the use of 
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classifiers, instead of the selection of thresholds published in the aforementioned work. This makes 
the methodology generic and robust. The suitability of these classifiers is explored via the 
classification maps and the bias curves obtained per class. 

Section 2 explains the selection of parameters for the classification and the properties of  
the selected classifiers. Next, in Section 3, the datasets used in this paper are detailed. The Results 
section includes the classification maps, the bias curves and ETb outputs compared with the 
original methodology. The application of the method to the region of Africa is shown in Section 5, 
together with the comparison of the results with existing literature. Finally relevant issues about the 
proposed improved methodology can be found in the Discussion and Conclusions sections. 

2. Method 

The objective of this work is to improve the existing methodology for ETb estimation [8] on two 
aspects: the selection of parameters for the classification of the study area and the 
classification method. 

2.1. Selection of Parameters for the Classification 

The hypothesis here is that the classification output discriminates between areas with different 
bias curves, i.e., differences along the year of MSG–ET and GLDAS–ET estimates. Therefore, 
potential variables need to be identified in order to explain the differences in ETactual retrievals. In 
the present work, a more complete selection of parameters is carried out by accounting for three 
processes at which ETactual estimation from both sources may differ, namely vegetation 
characterization, atmosphere/forcing definition and land–atmosphere interaction. In order to 
account for the vegetation properties, a typical indicator is selected, the NDVI, and in particular its 
maximum value along the year, NDVImax. Precipitation and net radiation are combined into a 
climatic indicator (CI) to account for the driving forces for ETactual, as follows [18]:  

nR
PLCI =  (2) 

where L(J/kg) is the latent heat of vaporization, P (mm) is the annual precipitation and Rn (W/m2) 
is the annual net radiation (obtained as the sum of net shortwave (Sn) and net longwave (Ln) 
radiation). In other words, the LP term is the amount of energy necessary to evaporate the available 
precipitation P.  

The land–atmosphere interaction is included in the selection of parameters by means of the 
monthly accumulated ETactual, and in particular the maximum value along the year (ETmmax). This 
aggregated value is chosen in order to reduce relative errors in ETactual estimation. Since the focus 
of this paper is to obtain the ET bias curves per class, including ET itself in the classification inputs 
contributes to capture the observed variability. Moreover, as shown in previous literature [8,13], a 
seasonality was found in this bias. The position of the bias maxima was variable and, therefore, it 
was reasonable to select t_ETmmax (month when ET monthly maxima occurs) to account for these 
different patterns. 
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Being aware that other potential variables might have been included in this selection, such as 
land surface temperature and albedo, effective precipitation, soil moisture, LAI or topography, the 
number was limited in order to reduce data redundancy when the parameters were correlated or 
equivalent in terms of climate and vegetation interaction. Moreover, the use of too many variables 
in a classification procedure may decrease the classification accuracy [19].  

2.2. Classification Methods  

Many classification methods exist in the literature and all have their own merits. However,  
the question of which classification approach is suitable for a specific study is not easy to  
answer [20]. Romaguera et al. [8] used a basic classification method, based on thresholds, as 
follows: NDVImax higher/lower than 0.4, October to March and April to September periods for the 
NDVImax to occur, and VZA intervals of 10°. 

In this paper, the use of three different classifiers was explored and discussed. Firstly, a common 
classification approach was chosen: an unsupervised classification based on k–means. Secondly,  
a more advanced learning method was selected: an unsupervised classification based on the 
expectation–maximization algorithm. These two approaches do not use training samples, they work 
per pixel, they are hard classifiers (i.e., output is a definitive decision) and they do not use spatially 
neighboring pixel information for the classification, all aspects that are appropriate to this study. 
Thirdly, an image transform of the selected parameters was carried out by using the principal 
component analysis in order to reduce data redundancy of correlated bands and concentrate the 
information contents in the transformed images, exploring the possible clustering. 

2.2.1. Unsupervised Classification Based on K–means  

An unsupervised classification of the study area was executed in order to cluster pixels based on  
the k–means statistical technique [21]. This method calculates initial mass means evenly distributed 
in the data space and then iteratively clusters the pixels into the nearest class using a minimum 
distance technique. In each iteration, classes’ means are recalculated and pixels are reclassified 
with respect to the new means. All pixels are classified to the nearest class unless a standard 
deviation or distance threshold is specified, in which case some pixels may be unclassified if they 
do not meet the selected criteria. This process continues until the number of pixels in each class 
changes by less than the selected pixel change threshold or the maximum number of iterations is 
reached. The four-layer input file contained NDVImax, ETmmax, t_ ETmmax and CI as described in the 
previous section. A maximum of 100 iterations was fixed to ensure completion of the algorithm, 
and the default value of 5% was conserved for the pixel change threshold [22]. 

Neither standard deviation, nor distance thresholds were fixed. In order to select the optimal 
number of clusters and to evaluate the clustering found by the algorithm, a scattering distance (SD) 
quality index was calculated according to Rezaee et al. [23], which accounts for the intra–cluster 
and inter–cluster distances as: 

)()()( cDiscScatacSD +=  (3)
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where c is the number of clusters, Scat(c) is the average scattering and indicates the average 
compactness of the clusters (i.e., intra–cluster distance), Dis(c) is the total separation between the c 
clusters (i.e., an indication of inter–cluster distance), and a is a weighing factor equal to Dis(cmax), 
where cmax is the maximum number of input clusters.  

A small value of Scat(c) indicates a compact cluster. The second term Dis(c) is influenced by  
the geometry of the cluster centers and increases with the number of clusters. The optimal value for  
the number of clusters present in the data set is such that minimizes the SD index.  

In the present research, the maximum number of clusters for the unsupervised classification was 
set to 20, assuming a reasonable minimum percentage of pixels per class of 5%. The classification 
was obtained for 5 up to 10 clusters and SD was calculated. As a result, the number of clusters for 
which the SD quality index was minimized was found to be 6 in the region of Europe. 

2.2.2. Unsupervised Classification Based on the Expectation–Maximization Algorithm (EM)  

The Expectation–Maximization algorithm [24] is an iterative procedure that estimates the 
probabilities of the elements to belong to a certain class, based on the principle of maximum 
likelihood of unobserved variables in statistical models. The EM iteration alternates between 
performing an expectation (E) step, which creates a function for the expectation of the  
log–likelihood evaluated using the current estimate for the parameters, and a maximization (M) 
step, that computes parameters maximizing the expected log–likelihood found on the E step. These 
parameter estimates are then used to determine the distribution of the latent variables in the next E 
step. This classification was performed using the machine learning software WEKA version 3.6.9 
(Waikato Environment for Knowledge Analysis) [25], using the implemented Simple EM 
classifier. This software contains tools and algorithms for the analysis of data and predictive 
modeling, where the system is trained and can learn from the data and provide classified outputs. 
EM assigns a probability distribution to each instance which indicates the probability of it 
belonging to each of the cluster and can decide how many clusters to create by cross validation. In 
the current research, the maximum number of iterations was set to 100 to ensure completion of the 
algorithm. Moreover, the software allowed to test the model output by using the 66% of the data as 
a training set and the rest for testing. 

2.2.3. Classification Using Principal Component Analysis (PCA)  

The principal component analysis (PCA) [26] consists of a transformation of the input dataset 
(multilayer file with NDVImax, ETmmax, t_ETmmax and CI) to produce uncorrelated output bands, 
segregate noise components, and reduce the dimensionality of data sets. The characteristic matrix 
(covariance matrix or correlation matrix) of the variables, the eigen values, the eigen vectors 
(which are the directions of the principal components (PC)), and the coordinates of each data point 
in the direction of the PC’s were calculated. A new set of orthogonal axes was found, which had 
their origin at the data mean and which were rotated so the data variance was maximized. PC 
output bands were linear combinations of the original spectral bands and were uncorrelated. The 
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relationships found between the principal components, which led to the clustering of the data are shown 
in the results section. 

3. Data Sets 

Table 1 describes the main characteristics of the datasets used in the present work which are 
detailed in the following subsections. 

Table 1. Specifications of the data sets used in the present work. 

Data Source 
Spatial  

Coverage 

Spatial  

Resolution 

Temporal 

Resolution 
Details 

ETactual 

MSG MSG disk * 3 km at nadir 30’ 

Availability of data: 

Europe: January 2007–present 

The rest: September 2009–present 

GLDAS Global 
0.25° 

(~30 km at equator) 
3 h 

Availability of data: 

February 2000–present 

Sn, Ln, P  GLDAS Global 
0.25° 

(~30 km at equator) 
3 h 

Availability of data: 

February 2000–present 

Land Cover MERIS  Global 300 m Static 
GlobCover map calculated in year 

2009 

NDVI AVHRR 

Europe 

1 km Monthly 

Generated by DLR 

Period: year 1997 

Africa 
Generated by IGBP 

Period: April 1992–March 1993  

Irrigation Blue WF Global 
5 arcmin 

(~10 km at equator)  
Static Data: blue WF per year[3] 

* Meteosat disk covers latitudes between 60° and +60° and longitudes between 60° to +60°; ** List of 
acronyms: MSG (Meteosat Second Generation), GLDAS (Global Land Data Assimilation System), 
MERIS (Medium Resolution Imaging Spectrometer), AVHRR (Advanced Very High Resolution 
Radiometer), DLR (Deutsches Zentrum für Luft– und Raumfahrt), IGBP (International Geosphere–
Biosphere Programme Data), WF (Water Footprint). 

From a technical point of view, the combination of data of different spatial resolution, extent  
and geographical projection was tackled by creating a layer stack where the data were resampled 
and re–projected to a common output projection. The present work was carried out at the resolution 
of the MSG–ET products. 

3.1. Evapotranspiration and Cover Type Data  

Based on Equation (1), the main datasets for obtaining the ETb were the ETactual products from 
the MSG satellites provided by the Land Surface Analysis Satellite Applications Facility  
(LSA–SAF) [13] (MSG–ET) and ETactual from the Global Land Data Assimilation System 
(GLDAS) generated with the Noah land surface model [27,28] (GLDAS–ET). These datasets are 
available from the LSA–SAF website (http://landsaf.meteo.pt/) and the NASA Goddard Earth 
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Sciences Data and Information Services Center (GES DISC) (http://disc.sci.gsfc.nasa.gov/ 
hydrology/data-holdings) respectively.  

The GlobCover land cover map (ver. 2.3) [29] was used to identify the land cover type, e.g.,  
rain–fed croplands (where the bias was calculated) and bare areas (where ETactual rates are low) (see 
Figure 1). More detailed information about these datasets can be found in Romaguera et al. [8]. 

Figure 1. Pixel type (only rain–fed croplands, rest of croplands, bare areas, others) 
from the GlobCover classification map. 

  

In the research presented, daily MSG–ET values were obtained by temporal integration of the  
48 instantaneous values per day, during the year 2010. Linear interpolation in time was used to fill 
in missing data, due to non–acquisitions. Daily MSG–ET were not considered if missing data 
occurred during periods of one hour or longer. Daily GLDAS–ET values were obtained by 
temporal averaging of the eight provided ETactual rates per day. No missing data were found in  
this dataset.  

3.2. Data for the Classification  

As explained in previous sections, four parameters were selected for the classification of the 
study area: (a) NDVImax; (b) a climate indicator (CI) based on net radiation, latent heat of 
vaporization and precipitation; (c) the maximum value of monthly aggregated ET (ETmmax); and (d) 
the month where the ETmmax occurs (t_ETmmax). The selected study area was Europe and the year 
was 2010. Additionally, the classification was also obtained in Africa for testing the method. 

In order to ensure consistency of the data, the NDVImax was extracted from the source related  
to MSG–ET retrieval. That is the ECOCLIMAP database [30], which includes the LAI values that 
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are used in the MSG–ET algorithm. These values are obtained by taking in situ maximum and 
minimum values of LAI and considering Advanced Very High Resolution Radiometer (AVHRR) 
NDVI series to impose seasonality per class cover. For Europe, the monthly NDVI values 
generated during the year 1997, by the Deutsches Zentrum für Luft– und Raumfahrt (DLR) [31], 
are considered, and, for Africa the International Geosphere–Biosphere Programme Data (IGBP) 1 
km AVHRR NDVI composites from April 1992 until March 1993 [32]. Although these values may 
not represent irrigated vegetation in the year of analysis, they influence the MSG–ET retrieval and 
therefore the difference with GLDAS–ET, which is the focus of this research. 

CI was calculated for the year 2010, according to Equation (2), by yearly aggregating Rn and P. 
Net radiation was obtained as the sum of net shortwave (Sn) and net longwave (Ln) radiation, which 
were obtained from the GLDAS dataset, together with the precipitation values. 

GLDAS–ET values were aggregated monthly and the maximum value was obtained (ETmmax), 
as well as the month when it occurred (t_ETmmax). Radiation and ETactual values in GLDAS were 
given as rates every 3 h, so the proper way to calculate the yearly/monthly values was by temporal 
averaging of the data corrected by the time conversion factor. 

The data sets were filtered according to the following criteria. Firstly, bare pixels defined by  
the GlobCover classification map were masked. These are arid areas, where the estimation of 
t_ETmmax may be affected by fluctuations of the low values of ETactual. Secondly, coastal pixels with 
nonrealistic values were also masked. This effect appeared when resampling the data to a common 
grid and pixel size. Finally, pixels with negative NDVImax value were also masked for the 
calculations. These were found in the datasets in areas close to water bodies. Figure 2 shows the 
selected data sets for the classification and the study area. Finally, every dataset was normalized 
dividing by its maximum and the generated four–layer file was used for the classifications. 

3.3. Data for the Test of the Method 

The global blue water footprint (WFb) of crop production estimated by Mekonnen and  
Hoekstra [3] was used to compare the ETb outputs produced in Europe and Africa. The water 
footprint (WF) is defined as the water consumed for crop production, where green and blue stand 
for precipitation and irrigation water usage. In their method, the computations of crop 
evapotranspiration were done following Allen et al. [33] for the case of crop growth under  
non–optimal conditions. The model takes into account the daily soil water balance and climatic 
conditions for each grid cell. Climatic and reference evapotranspiration inputs are averaged for the 
period 1996–2005 and results are given as average over that time interval. WFs are typically given 
in units of m3/ton or mm/year. In the last case, the yield is not considered and therefore WFb 
corresponds to total ETb. This product has global coverage and a spatial resolution of 5 arcmin. 
  



312 
 

 

Figure 2. Study area and inputs used in the present paper: (a) NDVImax; (b) Climate 
indicator; (c) ETmmax; (d) t_ETmmax. 

 
(a) 

 
(b) 

(c) (d) 

4. Results 

This section shows the classification maps generated with the three selected methods. The  
k–means and EM classifiers have a straightforward application. For the PC approach, the 
relationship between the first and third PC allowed identifying 11 vertical clusters, whose pixels 
were assigned to 11 classes (named from 1 to 11, from left to right of the Figure 3). Neither clear 
relationships nor groupings could be established between the PC1 and the components PC2  
and PC4. 

4.1. Classification Maps 

Figure 4 shows the classification maps obtained using the new set of input parameters and the 
three classifiers in the region of Europe. The map generated in Romaguera et al. [8] (ROM in the 
following) is also included for the sake of comparison. Information about the abundance of 
different cover types is shown per class. Three cover types are considered: (i) only rain–fed 
croplands; (ii) rest of croplands (irrigated and mixed types); and (iii) others (forests, shrublands, 
woodlands, sparse vegetation, grassland, savanna, lichens/mosses), according to the GlobCover 
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map. Additionally, the number of rain–fed croplands (RC) and the ratio of these over the total 
croplands (RC/TC) are incorporated.  

Figure 3. Scatter plot of first principal component (PC1) versus the third (PC3) 
obtained in Europe from the classification dataset proposed in this paper. 

 

Figure 4. (a) Classification maps obtained using the methods ROM, k–means, EM and 
PCA; (b) Abundance of cover type per class (i) only rain–fed croplands; (ii) rest of 
croplands (irrigated and mixed types); or (iii) others (forests, shrublands, woodlands, 
sparse vegetation, grassland, savanna, lichens/mosses); (c) Total of rain–fed cropland 
pixels (RC) per class and ratio between RC and the total number of cropland  
pixels (RC/TC). 

(a) Classification map (b) Abundance of cover type (c) rain–fed cropland pixels (RC) and 
ratio with total cropland pixels (TC) 

 
* Only pixels in the map are counted for plotting 

Class #RC RC/TC (%) 

1 750 24 

2 302 14 

3 1315 33 

4 328 21 

5 2832 45 

6 40 14 

7 13,872 40 

8 332 13 

9 6032 47 

10 10 7 

11 15,142 40 

12 32 7 
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Class #RC RC/TC(%) 

1 1889 14 

2 1654 32 

3 6710 34 

4 13,181 51 

5 17,996 43 

6 7880 34 
 

Figure 4. Cont. 

  

Class #RC RC/TC (%) 

1 4989 29 

2 13,222 50 

3 16,876 44 

4 2223 16 

5 9573 35 

6 301 27 

7 88 39 

8 2038 39 

  

 
Class #RC RC/TC (%) 

1 1 3 

2 7 11 

3 142 8 

4 674 16 

5 4075 26 

6 28,279 44 

7 15,948 38 

8 152 36 

9 8 14 

10 24 47 

11 0 0 
 

The number of classes generated was 12, 6, 8, and 11 in the ROM, k–means, EM and PCA 
classifications respectively. The numbers assigned to the classes must be understood as labels and 
their value is not necessarily related between the different classification outputs. In general, the 
proposed classifications had a visually more continuous spatial distribution than ROM, which 
presented the characteristic rings due to the intervals chosen in the VZA criteria. Moreover, some 
similar grouping can be observed in the generated classifications, such as the areas of Spain and 
East and center Europe in EM and PCA or Eastern part of Norway in k–means and EM, although 
this comparison is not easy to evaluate. The distribution of the classes in the k–means and EM 
classification showed the influence of all four input parameters, whereas in the PCA classification 
output, the parameter determining the classes was the t_ETmmax. This is associated to the fact that 
the third component of the PCA captures the variability (after transformation) of the discrete values 
of t_ETmmax. 
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Two majority classes were found in the ROM classification, as well as in PCA. That is 
represented in Figure 4b by the total height of the columns. However, the abundance of the classes 
in k–means and EM was more balanced, with no significant minority classes in the case of k–means.  

The blue color in the graphs indicates the amount of rain–fed croplands per class, which is also 
indicated in Figure 4c. This number is important since the bias is calculated in this cover type. 
Therefore in classes 6, 10, 12 from ROM and classes 1, 2, 9, and 10 from PCA, the bias was 
calculated with relatively few samples. Additionally, class 11 in PCA had no rain–fed pixels and 
the bias could not be calculated. 

Another relevant factor is the relative abundance of rain–fed croplands with respect to the total 
number of croplands (rain–fed plus rest of croplands) per class. The ETb is ultimately calculated in 
all croplands, and therefore this ratio (named RC/TC in the following) is important. The higher 
RC/TC is, the more representative the bias is for all the pixels in a class, that is in classes 3, 5, 7, 9, 
11 from ROM, 2 until 6 in k–means, 2, 3, 5, 7, 8 in EM, and 6, 7, 8, 10 in PCA. These classes had a 
ratio higher than 30%, as can be observed in Figure 4c. 

As a result of this analysis, it was concluded that the k–means and EM classification schemes 
improved the existing one (ROM) in two aspects: the spatial pattern of the classification map and  
the increase in number of rain–fed pixels and RC/TC per class, with less minority classes, showing  
the k–means a better performance. The PCA approach showed weaker changes. 

The evaluation of the performance of the classifications is detailed in the Discussion section. 

4.2. Bias Curves  

The bias values were obtained per pixel at monthly scale. Monthly ETactual values were obtained 
from the daily MSG–ET and GLDAS–ET estimates during 2010. Due to the lack of some  
MSG–ET data, and in order to obtain a consistent bias curve, the daily values were only aggregated 
when both datasets existed. Then, monthly bias values were obtained per pixel and yearly curves 
were averaged per class, using rain–fed pixels only, for each of the classifications. 

Figure 5 shows the bias curves using the three proposed classifiers and ROM. Additionally the 
mean bias curve using all rain–fed croplands is plotted as a reference. Note that they are discrete 
monthly values that are connected to facilitate visual interpretation. 

In general it was observed that the k–means and EM classifications achieved a better separation 
of the bias curves, compared with ROM and PCA. The k–means curves (Figure 4a) presented a 
minimum around the month of June in classes 3, 4, 5, and 6 with a general convex shape and 
amplitude up to 28 mm/month. A local maximum was found around August. The curves of 
classes 1 and 2 were concave and corresponded to classes with relatively low number of rain–fed 
croplands, achieving for class 1 the lowest RC/TC ratio (see Figure 4c). 

Classes 1, 2, 3, 5, and 8 in EM also presented a convex bias with maximum amplitude around  
May–June with values up to 28 mm/month. A local maximum was found around August. Classes 
4, 6 and 7 were concave; 4 and 6 corresponded to lowest ratio RC/TC and class 7 to lowest value of  
rain–fed croplands. 
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Figure 5. Bias between MSG–ET and GLDAS–ET obtained in rain–fed pixels and 
averaged per class, using different classifiers. (a) k–means; (b) EM; (c) PCA; (d) ROM;  
(e) all rain–fed pixels. Note: Monthly discrete values are connected to facilitate  
visual interpretation. 

 
(a) k–means 

 
(b) EM 

 
(c) PCA 

 
(e) All rain–fed croplands 

 
(d) ROM 

 

In the PCA classification, classes 5, 6, and 7 behaved in a similar way as the convex curves 
described for k–means and EM. These were the classes with higher number of rain–fed pixels and 
also high RC/TC. Classes 2, 3, 4, 8 and 10 were concave and presented more irregular bias curves. 
These were less abundant classes, some of them not even noticeable visually in the figure, in 
general they had lower ratio RC/TC and relatively low number of pixels. Class number 9 presented 
an intermediate pattern and classes 1 and 11 were not plotted since they contained only one  
rain–fed pixel or none. 
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The biases obtained from the ROM classification were more fuzzy and irregular. Some of  
the classes (3, 5, 7, 8, 9, and 11) presented a convex shape similar to the aforementioned curves, 
but the pattern was irregular and it was difficult to distinguish between classes and extract 
conclusions regarding the amount of rain–fed croplands and RC/TC.  

Finally, Figure 5e shows the variability of the bias curve when all rain–fed croplands are averaged 
and no classes are taken into account. The position of the minimum and local maxima is consistent 
with what it has been described in this paper, and the amplitude is in general flattened due to  
the averaging. 

In general the k–means and EM approach represented an improvement with respect to the ROM 
bias results in terms of separation of the bias curves, which means a better discrimination of the 
classes. Furthermore, differences in the maximum amplitude of the curves were also found. In order to 
understand them better, Figure 6 shows the comparison of the bias values around the maximum 
(month six) (represented as dots) together with the standard deviation associated to it (represented 
as error bars and also in columns). This was obtained for all the classes and for the mean curve 
where no classes are assigned (Figure 5e). 

Figure 6 shows how the standard deviation ( , in columns and secondary Y axis) changed when 
adding a classification in the method instead of using a single bias curve averaged for all rain–fed 
croplands. In general, the diminution of  was found in majority classes. In the case of the k–means 
classifier,  was reduced in classes 4, 5, and 6 and slightly increased in classes 1, 2, and 3. For the 
EM classifier,  increased in classes 1, 4, 6, 7, and 8. In general terms,  increased in the PCA 
classification, and the values in ROM fluctuated depending on the class. It was also observed that 
the increase of  was related with the decrease of number of rain–fed croplands and RC/TC in  
the class. 

In terms of the bias value, the classifiers captured different intervals of variability: between 27 
and 10 mm/month in k–means, between 23 and 15 mm/month for EM, between 18 and 20 
mm/month for PCA and between 19 and 2 mm/month for ROM. The value of the bias for the 
single curve was 15 mm/month. Therefore the proposed classifiers captured a higher range of bias 
with respect to ROM. 

Previous literature showed the differences between MSG–ET and GLDAS–ET [13,34]. For the 
region of Europe, these studies showed the bias relative to the mean MSG–ET, with values ranging 
from 0.5 to 0.5. The mean MSG–ET in the month of July was also plotted in this literature, with  
a value of 0.22 mm/h calculated in the range 9–12UTC. If we assume a constant ETactual rate, and 
10 h of sun, the aggregated value is 66 mm/month. This value combined with the ±0.5 values of 
relative bias, produces values of absolute bias up to 33 mm, which is consistent with the intervals 
found with the proposed classifiers. 

As a result of this analysis, the k–means approach showed to improve the existing methodology 
and perform better than EM and PCA in different aspects related with the bias estimation; first, the 
ability to differentiate bias curves; second, by reducing the standard deviation of the data when 
introducing the classes; third, by capturing the expected variability of the maximum bias. 
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Figure 6. ET bias at month six and standard deviation (error bars and columns) 
obtained for all the classifiers and classes discussed in this paper. The label “all” refers 
to the calculation with all rain–fed croplands, where no classes are assigned.  

 

Therefore based on the conclusions extracted from the classification and bias analysis, the  
k–means is used in the following to estimate ETb, since it was shown to be the most suitable 
approach for this research. 

4.3. ETb Estimation 

ETb was obtained in the region of Europe in 2010 following Equation (1), the k–means 
classification and the bias results. ET values were calculated daily when both datasets were 
available and then accumulated monthly. Monthly bias corrections were undertaken, and the 
resulting positive ETb values were aggregated to a yearly scale. 

According to the method described in Romaguera et al. [8], the GlobCover map was used to 
mask all cover types except for the rain–fed croplands, irrigated croplands and mixed types that 
include croplands. Although in that publication a value of 50 mm was suggested as a threshold 
from which the method was able to detect irrigation, in the current research, no threshold was 
considered based on the fact that small values of ETb may be also representative for  
heterogeneous pixels. 

The same procedure was used to obtain ETb using the classification scheme provided in the 
literature (ROM). The comparison showed how the outputs changed when using a different 
classification scheme. ETb reached differences up to 60 mm/year, being ETb (k–means) higher in 
some regions of Ukraine and lower in some regions of Spain, Turkey and coast of France. The 
spatial distribution of these differences is related with the classification maps, being for example 
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the red areas in Figure 7 associated with class number 2 of the k–means classification that has a 
convex shaped bias. 

Figure 7. Difference between yearly ETb (ROM) and ETb (k–means) obtained for the year 2010. 

 

5. Application of the Method 

The study area selected to test the method was the whole Meteosat observation disk, which 
included Europe and Africa, in the year 2010. The analysis was carried out by separating it in three 
sectors namely Europe, North Africa, and South Africa, like the MSG–ET products delivered by 
LSA–SAF. These sections are separated at the latitudes of 34°N and the equator approximately. 

Following the method explained in the present paper, a classification of every sector was carried 
out with the k–means algorithm using the proposed input data sets. Pixels labeled as bare areas by 
the GlobCover map were excluded from the classification. The optimal number of classes was 
calculated per sector following the procedure explained in Section 2.2.1. The bias curves per class 
in the rain–fed pixels of North Africa and South Africa are plotted in Figure 8.  

Figure 8. Bias curves obtained in rain–fed pixels of the sectors (a) North Africa and 
(b) South Africa. 

 
(a) 

 
(b) 

Similarly to the conclusions found in Europe using the k–means approach (Figure 5), the curves 
present distinguishable patters with different amplitudes and shapes. Classes 1, 4 and 6 in North 
Africa present more defined convex bias curves which correspond to highest numbers of rain–fed 
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pixels and ratio RC/TC, whereas classes 3 and 7 are represented by the lowest number of rain–fed 
pixels and ratio RC/RT. In the sector of South Africa, the curves present a shift of about six months 
with respect to the sectors of Europe and North Africa. This is due to the seasonality patterns of the 
southern Hemisphere. The most abundant classes in terms of rain–fed pixels were classes 2, 4, and 7. 
However, due to the relatively low quantity of rain–fed pixels in this sector, the ratio RC/TC is 
below 10% for all the classes in South Africa. 

Equation (1) was used in all the study area to calculate monthly ETb and the positive values 
were aggregated to a yearly scale. These were compared with the values of blue water footprint 
(WFb) for crop production estimated by Mekonnen and Hoekstra [3]. For consistency, the areas 
labeled with no irrigation croplands in Mekonnen and Hoekstra [3] were masked (see Figure 9). 

Figure 9. Difference between ETb generated in this paper and the WFb (mm/year) given 
by Mekonnen and Hoekstra [3]. 

 

The mean value of the differences found in Europe and Africa was 27 and 62 mm/year with 
standard deviation of 62 and 142 mm/year, and rmse of 44 and 155 mm/year. No straightforward 
correlation was found between the two datasets. Differences between the two methods were found 
to be below 50 mm/year in most of Europe and in some regions of Africa, although in this area the 
discrepancies (in positive and negative sign) were higher as also shown by the statistical indicators. 
Several reasons exist to explain the magnitude and sign of the differences.  

First, from a methodological point of view, Mekonnen and Hoekstra [3] used the cropmap of 
Monfreda et al. [35] to correct the calculated ETactual with the percentage of cropland per pixel, and 
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then the irrigated area map from Portmann et al. [36] to correct for the area used for irrigation. This 
resulted in values of annual ETb lower than the ones generated in this paper, as it can be observed 
in most of Europe and some regions in Africa indicated with green color.  

Higher discrepancies (in orange and red) were found in mid Africa. This can be explained based 
on the cover type and pixel heterogeneity, since these are areas labeled as forests and shrublands by  
the GlobCover map. The method by Mekonnen and Hoekstra [3] provided low values of ETb 
(below 1 mm/year) in these mixed pixels due to low value of irrigated cropland area. However, the 
method presented in this paper and the bias estimation were not developed for cover types different 
than croplands, and therefore the values obtained in these areas are not realistic and should be 
masked as indicated by Romaguera et al. [8]. This is the case also of the forested areas in Spain, 
Italy, Greece, and Turkey. 

The region of Ukraine presented higher values of ETb compared with the estimates given by 
Mekonnen and Hoekstra [3]. This can be explained by a combination of factors. Low values of ETb 
were obtained by Mekonnen and Hoektra [3] in the majority of this area. Higher values were 
obtained by the proposed method, which were influenced by the high values of ET found in the 
inputs. Moreover, this region is located in the extremes of the Meteosat observation disk, which 
might influence the accuracy of the remote sensed ETactual estimates. 

Areas painted in cyan were labeled as bare areas by the GlobCover map and were masked in  
the classification carried out in the present paper. That was done to avoid misclassification caused 
by the fluctuation of low ETactual rates in these areas. Therefore, the method did not provide ETb 
values, whereas Mekonnen and Hoekstra [3] estimated values of ETb below 1 mm/year. Moreover, 
other bare areas were also masked in the present paper and they provided significantly high values 
of ETb in the estimates of the literature. That was the case of the White Nile in Sudan and some 
areas in Morocco.  

Mekonnen and Hoekstra [3] provided significantly higher values of ETb in the region of the Nile 
basin. These are areas where the assigned cropland irrigated area from Portmann et al. [36] was 
higher than 100%, a fact that was related to multiple cropping practices. ETb estimates were higher 
than 1000 mm/year in this case. However, the method presented in this paper relied only on the 
differences between the ETactual inputs from MSG and GLDAS and the bias correction, achieving 
annual values in this region of 600 mm/year. 

Moreover, the discrepancies in some mountainous areas like Mozambique, Ethiopia or north of 
Italy, may be associated to the effect of the terrain on the radiation. In zones of complex 
topography, variability in elevation, surface slope and aspect create strong spatial heterogeneity in 
solar distribution, which determines air temperature, soil temperature, ET, snow melt and land–air 
exchanges. Therefore, MSG–ET satellite retrievals may need a slope and aspect correction to 
radiation inputs in areas of significant relief. Some remote sensing methods that include this 
geometric correction for calculating ET are given by Allen et al. [37] and Chen et al. [38]. Finally, 
together with the aforementioned methodological reasons, the differences between the two 
estimates might be related to the accuracy and parameterization of the input data, and the period of 
comparison, since the datasets were obtained at different time spans. 
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6. Discussion 

6.1. Uncertainty  

6.1.1. Performance of the Classifications 

Evaluating the performance of the generated classifications is not an easy task, especially due to  
the fact that a “ground truth classification map” that explains the different classes in terms of the 
biases between MSG–ET and GLDAS–ET does not exist. However, in order to optimize the 
performance of the methods, different strategies were adopted. The k–means settings were adjusted 
to a maximum of 100 iterations in order to ensure completion of the algorithm and the optimal 
number of clusters was calculated using a quality index [23] that accounts for the intra–cluster and 
inter–cluster distances, as it is shown in Section 1.2.1. 

The EM algorithm was trained with 66% of the data, and tested in the rest of the dataset 
providing a log likelihood of 7.04 in the test. The overall likelihood is a measure of the “goodness” 
of the clustering and increases at each iteration of the EM algorithm. The larger this quantity is, the 
better the model fits the data. In order to interpret this number, the model was applied to the whole 
dataset, obtaining a log likelihood of 7.6. This value was expected to be higher than using only the 
test dataset since the inputs included also the training data. However, the two log likelihood values 
were similar, which served as an indicator of the good performance of the classifier. Moreover, the 
EM algorithm found the optimal number of clusters for which the log likelihood had  
a maximum value. 

Finally the PC analysis was carried out by using two matrixes, the covariance and the correlation 
matrixes. The results showed the same clustering using both procedures, where the groups could be 
visually identified as it is shown in Figure 3. The usefulness of the generated classifications in  
the application that is presented in this paper (bias estimation and ETb), was discussed in Section 4.2. 

6.1.2. Uncertainty of ETb Estimations 

It was pointed out in Romaguera et al. [8] that Equation (1) provided some negative values of 
ETb which were not physically correct and were due to the uncertainties in the input data and in the 
bias curves definition. In the present work, these negative values were not used in the calculation of 
the annual ETb and in order to evaluate their significance they were aggregated during 2010 and 
combined with the yearly MSG–ET. The ratio between these two (not shown here) was less than 
10% in most of the croplands in the study area. The impact of the negative values was concentrated 
in areas labeled as “others” (see Figure 1) or in their proximity, like next to the Alps and the 
Carpathian mountains. 

Therefore, it was shown that with the proposed method the non–croplands pixels are more 
sensitive to errors and, therefore, they should be masked when producing ETb. 
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6.2. Limitations  

This paper focused on the improvement of the classification scheme proposed by Romaguera et al. [8]. 
The analysis presented showed satisfactory results when producing the classification maps and 
obtaining the bias curves. General limitations and aspects to be taken into consideration when 
obtaining ETb are extensively discussed in the aforementioned literature, and are related to the 
inaccuracies of the inputs, data availability, validation drawbacks and generalization of the method. 

Regarding the classification approach presented in this paper, several aspects need to  
be discussed.  

First, the selection of the parameters for the classification is justified in the text. However, 
additional parameters may have been used and a sensitivity analysis might be carried out to select  
the optimal set to describe the study area.  

Regarding the selection of the classifier, this work showed three strategies, different in concept 
and complexity. The k–means showed to work better in this research. Nevertheless, having in mind 
the coarse resolution of the data used, subpixel classifiers may be explored in order to account for 
mixed pixels and subpixel heterogeneity. In that case, aspects like avoiding over classification and 
tradeoffs in accuracy, time consumption and computing resources would need to be taken into 
account. Also, the better performance of the k–means approach, as compared to EM and PCA, was 
not tested in the application for Africa. 

The dimensions of the study area may play an important role when the classifier finds similar 
pixels apart of each other (e.g., North and South Africa). The bias value may be influenced by the 
averaging of rain–fed areas in these distant areas. Therefore, a preliminary test on qualitative 
differences in sub–continental bias patterns is advised to avoid these effects and select reasonable 
study area sizes. 

The GlobCover land cover map was used in several steps in this paper, to mask bare areas in  
the classification, to identify rain–fed croplands where the bias curves were obtained and finally to 
filter other land covers for ETb estimation. The results are therefore influenced by the inaccuracies 
of this input, since pixels may be misclassified.  

From a technical point of view, the rescaling and resampling of the input data to achieve a 
common spatial resolution may have an impact in the analysis. The nearest neighbor resampling 
technique was used in this research. In general, impacts on the results are expected due to the 
heterogeneity of the surface and the question of how representative are the low resolution data 
disaggregated to a higher scale. Up–downscaling techniques tackle this issue by using the 
parameters of surface temperature or NDVI [39,40]. 

The ETb results compared with existing literature provided differences of 50 mm/year in most of 
Europe. In Africa, the comparison was highly influenced by the assigned cover type and the 
heterogeneity of the pixel. Results over regions of high topographic relief point to the need for slope 
and aspect corrections to radiation inputs to the MSG–ET algorithm. Bearing in mind the 
advantages of both approaches (literature and present paper), the synergy between them may allow 
to benefit from the temporal frequency of the remote sensed data and from the better definition of the 
subpixel heterogeneity.  
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The in situ validation of the ETb estimates produced in this paper is hampered by the scarcity of 
good quality spatial data on irrigation at regional scale. The availability of irrigation water 
management information on a detailed scale like farmer fields or for entire river basins is not 
common. Data to quantify performance indicators are rarely collected. If collected, data frequently 
is unreliable or not easily accessible [10]. An attempt was made in previous literature to validate 
the methodology in a corn field in a cropland area in Spain [8]. Difficulties were found due to the 
unavailability of MSG–ET remote sensing data coincident with the literature, together with the fact 
that water resources and irrigation are politically critical issues and generally practices are not 
regulated or in situ quality data are difficult to access. Moreover, statistical databases such as 
AQUASTAT [41] provide static and scattered data. Therefore, the validation of the improved 
method with in situ data remains an open challenge. Although further research is needed to fully 
understand the ETb values found, this paper has shown to improve the classification scheme and the 
estimation of the bias curves between the sets of ET data from MSG and GLDAS. An example of 
application of this improved method to time series of data in the Horn of Africa and Southwest of 
China is presented in Romaguera et al. [42].  

7. Conclusions  

This paper provided a more generic and robust methodology to estimate blue water 
evapotranspiration (ETb) from remote sensing and simulated ETactual data, by enhancing the 
classification scheme employed in the literature. A new selection of input parameters was proposed 
and the analysis of different classifiers provided the best results for the k–means technique.  

The main outcome was the improvement of the definition of the bias between the two ETactual 
datasets, i.e., the ability to differentiate bias curves of different classes, reduction of the standard 
deviation of the data and achievement of the expected variability of the maximum bias.  

This paper proposed new tools to evaluate the variability of the biases between remote sensing 
and simulated ETactual data. However, the comparison of ETb in Europe and Africa with existing 
literature showed the need of further research to fully understand the final ETb values found. 
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Evaporative Fraction as an Indicator of Moisture Condition 
and Water Stress Status in Semi-Arid Rangeland Ecosystems 
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Pietro Alessandro Brivio 

Abstract: Rangeland monitoring services require the capability to investigate vegetation condition 
and to assess biomass production, especially in areas where local livelihood depends on rangeland 
status. Remote sensing solutions are strongly recommended, where the systematic acquisition of 
field data is not feasible and does not guarantee properly describing the spatio-temporal dynamics 
of wide areas. Recent research on semi-arid rangelands has focused its attention on the evaporative 
fraction (EF), a key factor to estimate evapotranspiration (ET) in the energy balance (EB) 
algorithm. EF is strongly linked to the vegetation water status, and works conducted on eddy 
covariance towers used this parameter to increase the performances of satellite-based biomass 
estimation. In this work, a method to estimate EF from MODIS products, originally developed for 
evapotranspiration estimation, is tested and evaluated. Results show that the EF estimation from 
low spatial resolution over wide semi-arid area is feasible. Estimated EF resulted in being well 
correlated to field ET measurements, and the spatial patterns of EF maps are in agreement with the 
well-known climatic and landscape Sahelian features. The preliminary test on rangeland biomass 
production shows that satellite-retrieved EF as a water availability factor significantly increased the 
capacity of a remote sensing operational product to detect the variability of the field  
biomass measurements. 

Reprinted from Remote Sens. Cite as: Nutini, F.; Boschetti, M.; Candiani, G.; Bocchi, S.; Brivio, 
P.A. Towards the Improvement of Blue Water Evapotranspiration Estimates by Combining Remote 
Sensing and Model Simulation. Remote Sens. 2014, 6, 6300-6323. 

1. Introduction 

The ecosystem carrying capacity and food security of the West African Sahel relies on annual 
vegetation production, which is concentrated in a short rainy period of four months, on average, 
between July to October [1]. The majority of the Sahelian livelihood counts on these wet months to 
get by in the dry season. The management of existing natural resources by the local population has 
developed several strategies to cope with climatic difficulties, such as exploiting herd 
transhumance at the beginning of the dry season [2] or handling the seedling date in the beginning 
of the rainy period [3]. 

However, recurrent erratic rainfall or a drought period could affect Sahelian food security, as 
happened during the great drought of the past century [4] and recent local food crises [5].  
Despite several adaptations of the Sahelian population to erratic climate conditions [6], food 
security still remains a concern, and an accurate estimation of regional yields plays an important 
role in food security [7].  
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The awareness of rangeland production in relation to water availability is of major interest for  
the implementation of operational monitoring systems to support policies aiming at reducing the  
socio-economic impacts of environmental stresses. As water availability is the main limiting factor 
for vegetation production, especially where average annual rainfall is lower than 500/600 mm [8,9],  
the interest to estimate rainfall and soil moisture at the regional scale in relation with biomass 
production has earned a lot of attention. 

Several recent studies analyzed time series of rainfall and vegetation indices highlighting the  
Sahel as an area where vegetation production is rainfall driven and only locally influenced by  
human activities [9–13]. Other works in the area compared vegetation production to trends of soil 
moisture [14] and rain use efficiency [15], identifying water availability as the main driver of 
vegetation growth and dynamics in the Sahel. A shortwave infrared water stress index (SIWSI) has 
been proposed as an indicator of vegetation water stress [16], while a combination of thermal data 
and vegetation index [16] were used to produce qualitative maps of soil moisture along the  
Senegal River. 

Compared to these methods, the estimation of evapotranspiration (ET) at the regional scale 
could give a more quantitative assessment of vegetation water status. ET is a key component of the 
water budget, and its estimation at different scales is of outmost importance for water management 
in agriculture [17] and food security programs [18]. ET can be appropriately measured at the field 
scale by lysimeters, scintillometers or eddy correlation techniques [18]. However, being highly 
dynamic in space and time because of complex interactions between soil, vegetation and  
climate [19], the quantification of its flux at the watershed scale is much more difficult than at a 
specific site [20]. 

Traditional methods to estimate ET assume homogeneous vegetation cover and structure, but 
these conditions are hard to meet for large regions [21]. For studies at regional and continental 
scales, monitoring models are coupled with remotely sensed data that can cope with the spatial and 
temporal variability of surface characteristics that affect evapotranspiration processes [18]. Several 
surface characteristics, such as albedo, vegetation cover, leaf area index and land surface 
temperature, can be retrieved from satellite observations providing data for ET estimation  
from space. 

Since the launch of Earth Observation satellites with thermal infrared channel, such as Landsat 
Thematic Mapper, NOAA-AVHRR and Terra/Aqua MODIS, several applications have been 
developed over near fully agricultural canopy covers and semiarid rangeland basins to estimate 
instantaneous ET and to scale up such estimations to daily ET. 

One of the widely used methods [22] to estimate daily ET is based on the evaporative fraction 
(EF), which is defined as the ratio between latent heat flux and the total heat leaving the Earth’s 
surface. A strong correlation between the value of EF at midday and the daytime average value has 
been observed [23,24], and it is often assumed as a constant daytime variable [18,21,25–32]. 

The EF has a strong link with soil moisture availability [33], which is the limiting factor of 
latent heat flux [29], and it is essentially controlled by water availability in the root zone [34]. The 
EF behavior at the landscape scale is correlated to the amount of vegetation cover [35], the timing 
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of rainfall events [36], the successions of wet and dry periods [37], the vapor pressure deficit and 
vegetation photosynthesis activity [38].  

EF has an annual behavior related to rainfall events, with peaks during the rainy season and 
decreasing when soil is drying [39]. In fact, a work conducted over paddy rice area shows that  
EF always has values close to one, because soil moisture was almost saturated [38].  

Recent works conducted in correspondence with eddy covariance stations in North America [39], 
the northern Australia savannah [40] and the Sahelian region [41] proposed the EF as an indicator 
of water stress to correct vegetation production estimation. The results of these studies indicated 
that the use of field-measured EF values within a light use efficiency (LUE) model allows one to 
improve the estimate of biomass production. 

EF can be derived from satellite data using the NDVI-temperature triangle method [42] or the 
simplified surface energy balance index (S-SEBI) model [43], following the relationship between 
albedo and land surface temperature [18]. This last approach found applications with a wide range 
of remotely sensed data and in different ecosystems. 

The accuracy of EF estimated by S-SEBI was demonstrated in comparison with other 
approaches, both for high resolution ASTER images [44] and low resolution NOAA-imagery [18]. 
Daily ET values, estimated via the EF approach, were validated at the field scale with flux 
measurements on cropland [27], as well as at the regional scale over the Iberian Peninsula with 
Digital Airborne Imaging Spectrometer (DAIS) high resolution data [26]. 

Outside of Europe, the use of this approach has been reported in the Mediterranean landscapes of  
Chile [45] and in the cotton crops of Brazil [46], demonstrating the suitability of the method in  
semi-arid areas. 

The aim of this work is to retrieve EF from satellite data in the Sahelian rangeland ecosystem 
and to evaluate the parameter as a moisture indicator, useful also as a correcting factor in the 
radiation use efficiency biomass estimation model. 

The application of the S-SEBI method requires the presence of wet and very dry  
surfaces [26,43,47]; these conditions are well satisfied over the West Africa area, thanks to 
presence of the Sahara Desert and stable, humid ecosystems, such as the Niger Inner Delta and 
Lake Chad. In particular, the goals of this research are: (i) to set-up an automatic procedure to 
derive EF maps from MODIS products; (ii) to evaluate EF estimation using in situ data and to 
assess EF maps at the regional scale; and (iii) to evaluate the improvement brought by satellite-
retrieved EF to the accuracy of the biomass production model. 

2. Study Area 

The study area covers 1200 × 2400 km over Niger and Chad. The northern part includes the 
Sahara Desert, where less than 200 mm of rain falls every year and human presence is almost absent 
(Figure 1). The central part is located on the Sahelian belt, identified by the isohyets of 200 and  
600 mm. This zone is mainly characterized by semi-arid savannah, where pastoralism is the most 
important livelihood activity, with localized evidence of agricultural activity (<20% of cultivated 
areas; [48]). The southern part of study area belongs to the Sudanian savannah, characterized by 
wetter climate (annual rain greater than 600 mm), an intensive farming system and less dependency 



332 
 

 

on rain for vegetation productivity [4,10]. The rainy season of the whole study area is essentially 
from July to October and slightly longer in southern areas, with almost zero precipitation during the 
rest of the year. 

A number of humanitarian crises have hit this area over recent years; although several are from 
concurring causes, such as food supply, livestock management, environmental degradation and 
household coping capabilities, low or erratic rainfall remains the key factor triggering the crisis [4,5,49]. 
In this region, the population has increased during the past 25 years [50]. The rural population is 
still growing, contrary to many other parts of the world, leading to heavy pressure on the 
environment, especially during adverse years. 

Figure 1. The study area overlaid on the regional GlobCover (GC) map of Africa [51];  
the red star shows the position of the eddy covariance station; the red diamonds represent 
the field sites; the blue lines indicate the isohyet boundaries of 200–600 mm/year. 

 

3. Materials 

3.1. Earth Observation Data 

According to the S-SEBI approach [43], the retrieval of EF from satellite data is based on the 
relationship between albedo and land surface temperature (LST). Two MODIS products were then 
considered: MCD43B3, i.e., the hemispherical reflectance (black-sky albedo) 8 days at 1-km spatial 
resolution, and MOD11A2, i.e., land surface temperature 8 days at 1-km spatial resolution [52].  
In order to cover the entire area of interest, two MODIS tiles (h18v07, h19v07) were downloaded 
for 10 years (2000–2009), summing up to about 450 images per tile. 

Other satellite-derived products were used for analysis and evaluation purposes. For the analysis 
of the EF contribution to biomass production, we used dry matter productivity (DMP) maps [53]. 
DMP is a satellite-derived product, developed at the Flemish Institute for Technological Research 
(VITO), that quantifies the daily increase of dry biomass (growth rate) and is expressed as 
kilograms of dry matter (kg·DM) per hectare per day. The DMP product used in this exercise is a 
10-day composite at 1-km spatial resolution covering the period 2000–2009. 

Ancillary satellite data consist of rainfall and vegetation maps for the study area. Rainfall 
estimation (RFE 2.0) is provided by Famine Early Warning Systems Network (FEWS) every 10 
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days at 8-km spatial resolution [54]. RFE 2.0 is produced by a combination of Meteosat 5 data 
(satellite infrared data) and daily rain gauge data extracted from the WMO’s Global 
Telecommunication System (GTS) with the additional integration of the two new Special Sensor 
Microwave/Imager (SSM/I) instruments on-board the Defense Meteorological Satellite Program 
satellites and the Advanced Microwave Sounding Unit (AMSU). Vegetation maps are represented 
by Normalized Difference Vegetation Index (NDVI ) provided by the SPOT-Vegetation satellite 
(VGT) sensor every 10-days at 1-km spatial resolution [55]. Finally for the analysis of EF behavior 
for different vegetation types, the regional GlobCover (GC) map for Africa with 300-m spatial 
resolution was used [51], which describes land cover classes over the entire study area. 

3.2. Field Biomass and Flux Measurements 

Field biomass data have been provided by Action Against Hunger (ACF) for three different sites 
in Niger (Figure 1). Three site were analyzed: the first site is located in a tiger bush area 35 km 
north of Nigeria border (Site 1, Longitude 10.9, Latitude 13.7); the eastern site is located around 
Lake Chad (Site 2, Longitude 12.8, Latitude 13.95), while the northern site (Site 3, Longitude 6.8, 
Latitude 15.8) is located around Agadez, which is the upper limit of pasture activities [56,57]. 
Biomass measurements were collected following the quick double-sampling technique [58] to 
calibrate/validate ACF satellite maps of available forage [59]. Overall, 19 annual biomass 
values/data are available for the period of 2000–2009 (Table 1). These ground samples provide 
crucial information for the evaluation of EF capability as a water stress factor in biomass estimation. 

Table 1. Field data cardinality and average sampled values of the three field biomass measurements. 

Site #Data Period 
AVG 

(kg/ha) 
Max 

(kg/ha) 
Min 

(kg/ha) 
Stand Deviation 

(kg/ha) 
Site 1 6 2003; 2005–2009 963 1,463 342 508 
Site 2 8 2000; 2002–2009 371 1,047 0 378 
Site 3 5 2001; 2005; 2007–2009 888 1712 326 614 

Flux measurements were collected at an eddy covariance tower situated in the Wankama 
catchment (Figure 1), 60 km east of Niamey, Niger. This site presents the typical Sahelian 
landscape with sparse savannah and millet fields. Daily data of net radiation (W·m 1) was measured 
every minute by the tower instruments at a height of 2.5 m; these data are supplied to the user from 
the CarboAfrica project through FLUXNET measurement network as the average over 30-min 
periods [60]. This variable is available as a Level 2 product, i.e., not gap-filled, but checked/filtered 
for out-of-range values or clearly wrong data [60]. The daily latent heat flux data (W·m 1), 
processed with despiking, double rotation and gap filling following the indications of [61], were 
obtained from the publication of [62]. Both fluxes are available for the period between June 2005 
and June 2007, including the wet season of 2005 and 2006. 
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4. Method 

4.1. Estimation of Evaporative Fraction 

The more widely applied method for ET estimation with passive remote sensing is the energy 
balance equation [18]. The land surface energy balance is the thermo-dynamic equilibrium between 
turbulent transport processes in the atmosphere and laminar processes in the sub-surface [17].  
The basic formulation can be written as: 

 (1)

where Rn is the net radiation, E is the latent heat flux (  is the latent heat of vaporization of water 
and E is evapotranspiration), G0 is the soil heat flux and H is the sensible heat flux. 

Evaporation and transpiration occur simultaneously, and there is no easy way of distinguishing 
between the two processes: when the crop is small, water is predominately lost by soil evaporation, 
but once the vegetation completely covers the soil, leaf transpiration becomes the main process [28]. 
Many satellite-based approaches estimate daily ET, exploiting the EF factor [26,32,44], defined as 
the ratio between the latent heat flux ( E) and the available energy at the land surface (Rn  G0): 

 (2)

In the present work, the EF estimation is obtained using the albedo-temperature method [43].  
This approach allows one to compute the EF for every pixel as the relative distance from two lines, 
called the dry edge and wet edge, defined through a date-specific albedo-LST relationship  
(Figure 2). The method’s accuracy is dependent on the presence of humid and arid surfaces in the 
study area. 

Figure 3 provides the flow chart of the steps followed for the EF estimation from satellite products,  
for each available date of satellite products. Albedo and LST data were extracted from the digital  
numbers (DN) of MCD43B3 (layer 10) and MOD11A2 (layer 1), as indicated by the MODIS product 
description [52], while information on LST data quality as derived from Layer 2 of the MOD11A2.  

Before starting the EF calculation, pixels flagged as “no-data” or “low quality” were masked out 
and excluded from the analysis. 

To perform the EF estimation, the albedo-LST scatterplot is derived for a single date (Figure 2) 
and analyzed to extract minimum and maximum temperature values for all of the albedo classes 
identified from statistical analysis [63]. 

The series of maximum and minimum LST values are used to calculate the date-specific dry and 
wet edge equation through linear regression: 

 (3)

 (4)

where m and q represent the parameters (slope and intercept) of the two regression lines, 0 
represents the albedo, while T is the land surface temperature.  
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Figure 2. Scatterplot between surface albedo and LST. Blue circles correspond to 
minimum temperature values for each albedo class, which are used to compute the wet 
edge (lower limit of the graph) through linear regression. Red circles correspond to the 
maximum temperature values for each albedo class, which are used to compute the dry 
edge (upper limit) through linear regression. TH (maximum temperature) and T E 
(minimum temperature) represent the values used in the calculation of the EF for  
the pixel i. 

 

Figure 3. Flowchart for the evaporative fraction estimation from the MODIS products 
of albedo and land surface temperature. 

 

The dry edge was defined considering only pixels in the radiative controlled condition, 
commonly identified as the maximum temperature data for all of the albedo values greater than the 
inflection point of the concave temperature-albedo scatterplot [17]. This condition was empirically 
defined for an albedo value above 0.2, as used also by [44].  

Exploiting the dry and wet edge, the EF can be calculated for every pixels i, dividing the 
difference between TH and the temperature pixel TS by the difference between TH and T E: 

 (5)
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where Tsi is the temperature value of the pixel i and THi and T Ei are respectively the maximum and 
minimum temperature value derived by the dry and wet edge functions for a given albedo value i. 

The EF equation can be rewritten as: 

 (6)

this procedure, implemented with an ad hoc code in IDL language (Interactive Data Language,  
version 8.2), was applied to each pixel of the image and on each date available for both MODIS 
tiles h18v07 and h19v07. 

The maps estimated at the same dates were mosaicked, obtaining EF maps of 122 × 2400 km to 
cover the entire study area.  

4.2. Evaluation of the Estimated EF 

Since it is well known that EF is related to water availability provided by rainfall, particularly in 
the natural vegetation of semi-arid environments, vegetation growth and land cover [29,35,38,64], 
we used the RFE, SPOT-VGT NDVI and GlobCover classes to assess the consistency of EF 
estimation. In particular, average and relative standard deviation (RSD) maps of EF are computed from 
the 448 8-day EF maps and analyzed for the major land cover classes of the study area, thanks to 
GlobCover map. This analysis was conducted in order to evaluate the coherence between the EF 
and the expected behavior over different vegetation covers. 

In correspondence with the eddy covariance tower, EF behavior was compared to rainfall events 
and vegetation growth. 

Quantitative evaluation of the reliability of EF estimations as a moisture (water stress) indicator 
is accomplished using the eddy covariance data from Wankama station.  

Due to the different time steps of satellite estimation and flux measurements, the satellite-
derived EF was compared with the 8-day average of daily ET corresponding to the MODIS 
composite. Data from the tower measurements identified as outliers from statistical analysis and EF 
satellite estimation flagged as low quality were excluded by the analysis. Moreover, thanks to 
Equation (7), it was possible to compare in situ estimation of EF with satellite-derived EF:  

 (7)

where Rnd and Ed are the daily net radiation and the daily latent heat flux, respectively. 

4.3. Biomass Estimation 

The seasonal cumulative DMP is an indicator of the annual rangeland production [15,65–67], 
which can be compared to the ground data, that represents the total annual herbaceous production 
measured in field.  

In order to compare satellite data with field samples, EF and DMP were extracted in 
correspondence with the field sites location in a buffer of 1 km. The 10-day DMP product for the 
period of July to October, referred to here as JASO, was cumulated to obtain the annual syntheses 
of dry matter production (DMPJASO).  
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The EF was exploited as a water availability factor to correct the satellite estimation of 
vegetation biomass (DMP). 

DMP and EF have different time steps (10 and 8 days, respectively); consequently, monthly 
values were calculated in order to use the water availability/stress factor in the biomass  
estimation model.  

For EF, the monthly average ( m) was computed for every month (m) and every site (s): 

 (8)

where EF8D is the estimated water stress from Equation (6), s is the site and n is the cardinality of  
the 8-day EF data for each month. 

For DMP, the monthly sum (DMPm) was calculated to represent the total dry biomass produced 
during every month at each site: 

 (9)

where DMP10D is the 10-day biomass estimation product, t is the number of DMP data within the 
month and s is the site.  

Monthly m and DMPm values were than integrated and annually cumulated by the following 
equation for each site: 

 (10)

where EFm and DMPm are the variable obtained from Equations (8) and (9), s is the site and 4 is the 
number of months in the JASO period.  

Finally, to quantify the improvement of DMPJASO*, the comparison between observed and 
estimated values were performed and difference-based statistics [68] together with regression 
analysis and Akaike information criterion (AIC) [69], Equation (11), were conducted. 

 (11)

where n is the number observed/simulated pairs, MSE is the mean square error and T is the number 
of inputs in the model. 

AIC with a lower value indicates whether the increase in the input of a model is compensated 
for by a significant increase in accuracy. 

5. Results and Discussion  

5.1. Dry and Wet Edge Statistics 

Figure 4 shows the average intercepts (a) and slopes (b) for the calculated dry (empty triangles) 
and wet (filled circles) edge. Every point represents the average of 10 estimations from 2000 to 
2009 together with a bar representing the standard deviation. The dry edge statistics of the slope 
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and intercept are on the second y-axis, to facilitate a comparison with the wet edge statistics. The 
gray shaded area displays the period when generally no rainfall occurs in the study area. 

Figure 4. Eight-day average values of the intercept (a) and slope (b) obtained from dry 
and wet edge lines for the 2000–2009 period. Shaded gray areas represent the dry 
season. Plots show three albedo-LST scatterplots for the year, 2009. 

  

The intercept of the dry edge follows the typical behavior of West African temperature [70],  
with lower values during the wet season (June–October) and two peaks during the dry season, the 
former in April and the latter in November. 

The Wet edge intercept has lower value in the wet season and stable, higher values during the 
dry one. The average slope coefficient shows that during the dry season, the wet edge is generally 
horizontal (values close to zero), while the dry edge has a high negative slope (values down to 

60), as shown by a similar analysis conducted in the Mekong Delta [71]. 
On the contrary, in the rainy period, the dry edge is almost flat, while the wet edge has a strong 

positive slope (values up to 60). In general, the coefficients of wet and dry edge follow a seasonal 
behavior driven by rainfall and incoming solar radiation. 

Figure 4 shows also three examples of the albedo-LST scatterplots. The first displays the dry 
season condition with the flat wet edge and the second one the wet condition with the flat dry edge. 
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The last scatterplot displays an intermediate condition at the end of the rainy season, when the two 
lines are both oblique and the maximum LST is higher. 

The maximum albedo value of 0.6 in the scatterplots highlights the presence of high reflective 
surfaces [72], which correspond to brighter desert areas. These areas are stable through the season; 
hence, they are present in every plot. 

The areas with lower temperature (below 305 K) and lower albedo (below 0.2) correspond to a 
permanent humid zone, such as the Lake Chad area and the border of the Niger River. 

The permanent presence through the years of these two extreme situations allows one to produce 
a meaningful scatterplot describing the contrast between dry and wet areas, hence guaranteeing the 
conditions for the application of the method [17,43]. 

5.2. Evaluation of EF Spatial Patterns  

Figure 5 shows the mean EF map obtained from the estimated 448 maps for the period of  
2000–2009 (a), together with the RSD (b). As expected, the mean values vary between zero and 
one, where zero indicates the hyper-arid condition and one the humid area. The areas with a mean 
rainfall below 200 mm, belonging to the Sahara Desert, were excluded from the analysis, since 
these areas are not populated and EF estimation makes sense and is useful only on partially 
vegetated surfaces. Permanent arid areas (EF < 0.2) can be found close to the desert, especially in 
the Agadez province (Niger) and in the central part of Chad. Both of these areas rely on the  
“high-risk Sahel’s vulnerable zone”, where the main livelihood activity is transhumant herding [73].  

The hyper-humid area (EF > 0.7) can be found in correspondence with permanent water bodies, 
such as Lake Chad [74], Lake Fitri (central Chad) and Lake Kainji (west Nigeria). Furthermore,  
the woody hills in Nigeria, characterized by a high level of rainfall (more than 1200 mm/year),  
are generally well humid. The Sahelian belt is characterized by medium-low average values of EF 
(below 0.5) apart from the river belts: Niger in the west part of study area, Yobe along the  
Niger-Nigeria border and Chari south of Lake Chad.  

The RSD (Figure 5b) is a normalized measure of EF data dispersion. The equation of the RSD is 
obtained dividing the standard deviation by the mean. The lower percentage indicates a lower 
variability in the EF time series. 

The map highlights areas in red and orange with stable EF (RSD < 30%) from 2000–2009.  
These areas belong to lakes, rivers and wet regions in central Nigeria, which are also the regions 
characterized by high EF average values (Figure 5a). Hence, these well-watered areas have 
maintained their condition across the years analyzed. 

Vice versa, higher variation in EF values (RSD > 50%, blue and light blue) can be found in the 
northern Sahel (northern-western Niger and central Chad). In particular, in western Niger, the fossil 
valleys display a stronger variability of EF data compared to the surrounded rangelands, because of 
the greater water availability thanks to the morphopedological characteristics, as observed in [75].  
The high RDS indicates that the EF data of these areas can vary abruptly, thanks to the strong 
seasonality (intra-annual variability).  
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Figure 5. The map of the average EF (a) and relative standard deviation (b) derived 
from 448 EF eight-day maps (2000–2009). Isohyets were calculated from rainfall 
estimation (RFE) data for the same period. The hyper-arid areas (<200 mm·year 1) are 
masked out, and the GlobCover map is in the background. 

(a) 

(b) 

The high EF variability of northern areas in Niger, characterized by the small EF average, can 
be driven by particularly favorable years (inter-annual variability). 

The average EF map has been analyzed by GC classes (Figure 6). The GC classes are sorted 
from the mainly northern classes (GC_200) to the southern (GC_130), except for the classes of 
wetland (GC_180) and water body (GC_210). The most common classes are the bare areas 
(GC_200) and grassland savannah (GC_140). These two classes cover 70% of the entire study area. 
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Figure 6. Percentage of GC classes over the study area (codes and map color are 
reported) and the statistics of EF data for each LC classes (average (AVG) and relative 
standard deviation (RSD)). Red and green indicate land cover with a lower of a higher 
EF average, respectively. 

 

On average, the GC class with the highest EF value (EF = 0.83) is water bodies (GC_210). 
Among the vegetation classes, only irrigated crops (GC_10), forest (GC_60) and wetland have a 
mean EF greater than 0.6. The most arid classes (GC_140 and GC_200), with a mean EF lower 
than 0.4, describe the typical landscape of the northern Sahel [50].  

This analysis shows that the spatial patterns of EF data (long-term average) are in agreement with 
the well-known climatic and landscape features of these areas. A similar analysis conducted in  
China [21], Europe [26] and Africa [22] demonstrated that EF maps build up spatial and temporal 
patterns coherent with the presence of different vegetated surfaces, different climatic conditions 
and different seasonal behavior of vegetation. 

5.3. Comparison of Seasonal EF Estimations with Eddy Covariance Data 

5.3.1. Temporal Dynamics of the Variables 

Figure 7 presents the time series of net radiation, ET and EF measured at the Wankama eddy 
covariance tower (black lines) and the satellite-derived time series of EF (red dashes), RFE (blue 
bars), NDVI (green line), albedo (cyan line) and LST (gold line) extracted by the corresponding 
image pixel for the years 2005 (Figure 7a) and 2006 (Figure 7b). The Wankama eddy tower, placed 
in millet fields, is characterized by the typical Sahelian behavior of rainfall and vegetation  
growth [62].  

Code_1 Code Description % AVG RSD(%)

200 Bare areas 16% 0.38 21.91

201 Consolidated bare areas (hardpans, gravels, bare rock, stones, boulders) 12% 0.39 21.32

202 Non-consolidated bare areas (sandy desert) 23% 0.51 17.57

140 Closed to open (>15%) herbaceous vegetation (grassland, savannas or 
lichens/mosses)

11% 0.36 18.01

144 Closed (>40%) grassland 7% 0.42 16.32

110 110 Mosaic forest or shrubland (50-70%) / grassland (20-50%) 3% 0.44 22.92

30 30 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-
50%) 

7% 0.46 17.12

20 20 Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-
50%)

4% 0.53 16.59

10 10 Irrigated croplands 10% 0.60 13.33

60 60 Open (15-40%) broadleaved deciduous forest/woodland (>5m) 0% 0.64 8.39

130 130 Closed to open (>15%) (broadleaved or needleleaved, evergreen or 
deciduous) shrubland (<5m)

7% 0.58 11.99

180 180 Closed to open (>15%) grassland or woody vegetation on regularly flooded 
or waterlogged soil - Fresh, brackish or saline water

1% 0.67 18.40

210 210 Water bodies 0% 0.83 11.97

LC (GC) EF [-]

140

200
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Figure 7. From top to bottom, the temporal behavior of daily net radiation; daily 
evapotranspiration; EF-derived from the eddy covariance tower data at the Wankama 
site (black lines) together with eight-day EF estimation from MODIS data (red dashes); 
decadal NDVI-VGT (green line); decadal precipitation (blue bars), eight-day MODIS 
albedo (gray line) and eight-day MODIS temperature (yellow line) for 2005 (a) and 
2006 (b). Vertical lines represent the start and finish of the JASO period, doy the Day 
Of the Year. 

(a) (b) 

Vertical black lines indicate the average Sahelian wet season as being from July to October 
(JASO). The zero value of the satellite EF estimation, due to cloud contamination or other 
atmospheric interference in the data, was masked out from this analysis.  

Figure 7a shows the time series of remote sensed and measured variables for the year, 2005.  
The first eddy measurement was recorded in June (doy 160), after the beginning of rain. ET shows 
the peak (>4 mm/day) in August, as well as net radiation. RFE shows an early start of the rainy 
season compared to the JASO, with an intense rainfall period of 60 mm in May (doy 155). In total, 
524 mm fell in 2005.  

The red dashes indicate the eight-day period of satellite EF estimation from Equation (6) 
together with the in situ calculated EF from Equation (7). Both of the EF time series show higher 



343 
 

 

values in the rainy season and drops in correspondence with the low ET value (e.g., doy 210 and 
240). MODIS-derived EF decreases smoothly after doy 270, as happens for ET. 

The vegetation behavior, highlighted by NDVI, shows the start of the season around doy 200 (19 
July), about 50 days after the start of rainfall, because of the necessary time for germination [75]. 
NDVI has a specular behavior compared to albedo, as expected from the progressive cover of bare 
soil due to vegetation growth. The last two time series in Figure 7a display albedo and LST data. 
Both show a high value during the dry season, indicating a warm and bare surface. The rainy season 
has an average LST of 308 K (~35 °C), lower than the dry season average (311 K), because 
incoming energy during is exploited by evaporative and transpirative processes.  

Figure 7b shows the same variables for 2006. The rainy period is shorter and less abundant 
compared to the previous one, with 430 mm of total rainfall. The estimated EF reaches a peak of 
0.8 at doy 240 (28 August). The main EF drop is visible (doy 210) in correspondence with the drier 
period of the wet season, between the two main rain events. Both EF and ET rapidly decrease their 
values at the end of the wet season (doy 270). Higher vegetation growth occurs between August 
and September, and NDVI shows the presence of vegetation also in November–December (doy 
300–360, NDVI ~0.2), even if EF and ET show that the area is completely dry.  

The temporal behaviors of field measurements and satellite-derived data for 2005 and 2006 
display high variability between dry and wet months. The 2005 wet season had an early start, while 
2006 had a very late start, as well as an earlier end. Hence, the two years had different seasonality 
in terms of rainfall amount and distribution [62]. Among the several satellite-derived variables, 
estimated EF shows a higher correlation with estimated rainfall (data not shown), as expected from 
previous field studies [36,37,64,70], and in general, the estimated EF looks to be in accordance with 
the ET behavior and eddy covariance-derived EF. The temporal behavior of the EF variable is more 
noisy compared to the time series of other satellite-derived variables and hardly zero also in the 
absence of rainfall [39], as also displayed by eddy-derived EF.  

Both MODIS estimation and eddy EF have comparable values during the wet season (JASO), 
showing a higher average value for the wetter year, 2005 (  = 0.45;  = 0.07 for satellite and  

 = 0.51;  = 0.13 for in situ, respectively), when compared to the drier 2006 (  = 0.39;  = 0.07 
and  = 0.34;  = 0.09 for the satellite and in situ, respectively).  

5.3.2. Correlation Analysis with ET 

In order to evaluate the reliability of EF as a moisture indicator, a correlation analysis has been 
conducted between satellite EF estimation (y-axis) and ET measured by the eddy covariance tower  
(x-axis) (Figure 8). 

The EF resulted in being significantly correlated to ET (p < 0.001), with a regressive coefficient 
of 0.54 pooling together the two years (2005–2006). ANCOVA analysis reveals that single year 
correlations (2005, r2 = 0.62; 2006, r2 = 0.45) were not significantly different (p < 0.05).  
This correlation is biased by estimated EF in the late, dry season (January–May), when no rain and 
no vegetation are present, confirming that EF is noisy in the dry season [39].  
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Figure 8. Correlation between estimated EF (y-axis) and measured ET (x-axis) for both 
years 2005 (gray) and 2006 (purple) (n = 57). 

 

As expected the measured net radiation is better correlated with ET (r2 = 0.64), since it 
represents the climatic driving force of evaporative and transpirative processes. In order to 
investigate if EF can improve the capability to explain the variance of ET, a multiple regression 
was performed between ET as a dependent variable and two independent variables, the measured 
Rn and the simulated EF. 

Result shows that both the explanatory variables significantly contribute to the explanation of  
ET variability (70% of the total variance). Rn resulted in being more important, explaining about 
64% of the total variance (p < 0.001), and EF significantly improved the model with a further 6% 
of variance explanation (p < 0.01). These results indicate that EF estimated with low resolution 
satellite data is well correlated with the field measured flux and gives a statistically significant 
contribution to the explanation of ET variability. It is important to remember that the EF data is 
derived by 1-km albedo and LST products; this aspect can strongly limit the comparison with field 
data acquired on small plots in a heterogeneous environment.  

5.3.3. Biomass Estimation Improvements Using EF Correction  

The results of previous analysis confirmed the validity of EF as a moisture indicator supporting 
the idea of using this satellite estimation as a water stress factor in a radiation use efficiency model. 
Previous studies, exploiting only field-based EF, demonstrated that EF can be exploited as a water 
stress efficiency factor [41].  

To assess this contribution, the performance of operational products (DMPJASO) and biomass 
estimation corrected by EF (DMPJASO*) were compared with available annual production data over 
three test sites in Niger.  

In Figure 9a are shown the three sites’ specific correlations between the available field data and 
DMPJASO. The three sites show different correlations: in particular, Site 1 (black dots) presents little 
correlation (r2 = 0.49, intercept = 1300, slope = 0.3); Site 2 (blue squares) shows an average 
correlation (r2 = 0.51, intercept = 700, slope = 1.1); and Site 3 (red triangles) has a high correlation 
(r2 = 0.66, intercept = 400, slope = 0.3). All three sites have the typical Sahelian biomass  
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production [76], ranging from 100 (kg ha 1), in adverse years, to 20-times higher production in 
favorable climatic conditions. 

Figure 9. The correlation between annual biomass samples and satellite estimation 
DMPJASO (DMP, dry matter productivity) (a), DMPJASO* (b) and normalized data (c)  
(n = 19). Black dots for Site 1, blue squares for Site 2 and red triangles for Site 3. Black 
and gray diamonds represent normalized DMPJASO and DMPJASO, respectively. The 
dotted line indicates the 1:1 line. 

 
(a) (b) (c) 

Results demonstrate that the DMPJASO is able to detect the field biomass variability with  
site-specific, good correlation; however, the analysis of intercept and slope variability across sites 
indicates that the model is not able to give a robust quantitative biomass estimation. Indeed, the 
DMP algorithm does not take into account distinct efficiency factors in the conversion of light into 
biomass among different vegetation types. It should be reminded that, despite the three test sites 
featuring the same land cover and eco-region, the actual floristic composition and ecological 
characteristics could be much more different.  

In Figure 9b are shown the effect of the EF contribution (DMPJASO*) over the three sites. The 
plots show a general increase in the capacity of the remote sensing estimation in each site to detect 
the variability of the field measurements if water stress is taken into account, as indicated by the 
increasing of regression coefficients. Moreover, in particular, the EF has reduced the 
overestimation of the model for poorly productive years, as shown by intercepts closer to zero.  

Due to the observation of site-specific DMP product performance, in order to directly compare  
the two biomass estimations, satellite products and field data were normalized for each site.  
The normalized data allows one to remove the effect of local differences in the relation between 
satellite outputs and field biomass, visualizing only the overall model capability to detect the field 
data variance, rather than absolute values. Data were standardized and converted to z-scores by 
subtracting from each value the site average and then dividing the result by the standard deviation. 
In the analysis of time series, the z-score is a dimensionless quantity adopted to convert variables 
with different scales to a common domain [10,77].  

In Figure 9c are shown the normalized data, both for DMPJASO (gray dots) and DMPJASO* (black 
dots). The data close to zero are near the population average, while data values below or above zero 
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indicate a positive or a negative anomaly, respectively. The top right and bottom left corners 
indicate that years were estimated, and the measured variables’ data are in agreement.  

The correlation coefficient of the normalized DMPJASO* (r2 = 0.73, p < 0.001) indicates that 
there is a significative increase in the capacity of the remote sensing estimation to explain the 
variance of annual field biomass measurements if water stress (EF) is taken into account.  

This result is in accordance with previous work [41], even if the analysis was conducted at a 
monthly time step using EF derived with MODIS data (LST and albedo), rather than with  
field-measured EF and MODIS EVI at an eight-day time step. 

Finally, AIC was calculated in order to evaluate whether the increase in the input of the model 
compared to the basic DMP was compensated for by a significant increase in accuracy (a lower 
AIC value indicates a convenient model improvement) [69]. Despite the correction, proposed to 
increase the number of inputs in the biomass estimation, the usefulness of the EF approach 
(DMPJASO*) is confirmed by the improved model performance, indicated by the higher correlations 
shown in Figure 9c and the lower AIC value (106) compared with the one obtained with  
DMPJASO (112).  

6. Conclusions 

The work exploited an automatic procedure to calculate multitemporal evaporative fraction 
maps from low resolution albedo and land surface temperature satellite data over Niger and Chad. 
Up to now, this is the first time that multiyear (2000–2009), eight-day maps of the evaporative 
fraction were produced from low resolution satellite data and analyzed for the West African Sahel. 
The adopted methodology, based on previous scientific works and well suited for semi-arid areas, 
allowed producing maps able to identify patterns of wet and dry condition, which are coherent with 
the main ecological features related to land cover classes and precipitation regimes. 

The satellite estimation of the evaporative fraction, despite the uncertainty related to the 1-km 
resolution of the data, resulted in being correlated with the measurements of evapotranspiration  
(r2 = 0.54, p < 0.001) acquired for two years (2005–2006) by an eddy flux tower in Niger. The total 
variance of evapotranspiration is mainly explained by the measured net radiation (64%, p < 0.001), 
while the estimated evaporative fraction significantly improves the model with a further 6% of 
variance explanation (p < 0.01). These results demonstrate that the satellite-derived evaporative 
fraction is a reliable indicator of moisture, useful for savannah status monitoring. 

We further tested the use of the evaporative fraction as a water availability indicator to improve 
the accuracy of an operational remote sensing product of biomass estimation based on the radiation 
use efficiency concept. When the satellite-derived evaporative fraction is used as an indicator of 
water stress in the model, the correlation between annual biomass ground measurements and 
satellite estimations, for 19 samples over three sites, significantly improves (r2 = 0.73, p < 0.001) 
compared to the performance of the basic satellite product (r2 = 0.54, p < 0.001). The appropriate 
water efficiency term derived from optical and thermal remote sensing data represents an 
advancement over previous studies conducted using only the evaporative fraction derived by in situ 
eddy covariance data. 
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These findings are encouraging for the monitoring of biomass over wide savannah areas using a 
satellite-based approach. Future studies are needed to better parameterize the radiation use 
efficiency model and to calibrate existing products over different ecosystems, in order to take into 
account the limiting factors and efficiency in the conversion of light into biomass. 
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Evapotranspiration Variability and Its Association with 
Vegetation Dynamics in the Nile Basin, 2002–2011 

Henok Alemu, Gabriel B. Senay, Armel T. Kaptue and Valeriy Kovalskyy 

Abstract: Evapotranspiration (ET) is a vital component in land-atmosphere interactions.  
In drylands, over 90% of annual rainfall evaporates. The Nile Basin in Africa is about 42% dryland 
in a region experiencing rapid population growth and development. The relationship of ET with 
climate, vegetation and land cover in the basin during 2002–2011 is analyzed using thermal-based 
Simplified Surface Energy Balance Operational (SSEBop) ET, Normalized Difference Vegetation 
Index (NDVI)-based MODIS Terrestrial (MOD16) ET, MODIS-derived NDVI as a proxy for 
vegetation productivity and rainfall from Tropical Rainfall Measuring Mission (TRMM). Interannual 
variability and trends are analyzed using established statistical methods. Analysis based on 
thermal-based ET revealed that >50% of the study area exhibited negative ET anomalies for 7 
years (2009, driest), while >60% exhibited positive ET anomalies for 3 years (2007, wettest). 
NDVI-based monthly ET correlated strongly (r > 0.77) with vegetation than thermal-based ET 
(0.52 < r < 0.73) at p < 0.001. Climate-zone averaged thermal-based ET anomalies positively 
correlated (r = 0.6, p < 0.05) with rainfall in 4 of the 9 investigated climate zones. Thermal-based 
and NDVI-based ET estimates revealed minor discrepancies over rainfed croplands (60 mm/yr 
higher for thermal-based ET), but a significant divergence over wetlands (440 mm/yr higher for 
thermal-based ET). Only 5% of the study area exhibited statistically significant trends in ET. 

Reprinted from Remote Sens. Cite as: Alemu, H.; Senay, G.B.; Kaptue, A.T.; Kovalskyy, V. 
Evapotranspiration Variability and Its Association with Vegetation Dynamics in the Nile Basin,  
2002–2011. Remote Sens. 2014, 6, 5885-5908. 

1. Introduction 

Drylands are terrestrial ecosystems characterized by the scarcity of water. Rainfall is generally 
low (<600 mm/yr), and the potential rate of evapotranspiration greatly exceeds rainfall [1]. 
Drylands occupy about 41% the global surface and provide food, grazing for livestock, energy and 
forestry products and ecosystem services to about a third of the global population [2,3]. The 
limitations in water and/or nutrients have made these ecosystems highly sensitive to environmental 
changes and prone to land degradation, such as desertification [4]. With regards to socioeconomic 
conditions, dryland populations on average lag significantly behind the rest of the world on human 
well-being and development indicators [3]. This is particularly true for the Nile Basin of Africa, 
where a quarter of the continent’s population lives in a region where 42% of the basin is dryland 
and water is scarce [5–7]. Moreover, the population in the region is highly dependent on natural 
resources for its livelihood, highly vulnerable to food insecurity and exposed to political  
instability [6–8]. Over the last few years, the Nile Basin has undergone major transformation in 
land cover/land use change, mainly from expanding urban and agricultural activities, with possible 
implications for water use and food security in the region [9–13]. 
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At global and continental scales, evapotranspiration (ET) is the second largest component of the 
terrestrial water budget after precipitation [14]. While this proportion is retained at the basin scale, 
it is reversed in irrigation schemes and wetlands [15]. Terrestrial ET transfers a large volume of 
water from soil and vegetation into the atmosphere [16]. About 60% of the global annual land 
precipitation is lost to ET; while ET from vegetation constitutes about 80% of terrestrial  
ET [14,17]. In dryland ecosystems where much of the soil is bare, ET can consume as much as 
90% or more of the annual precipitation [18]. The high rate of ET (combined with the low rate of 
rainfall) in dryland ecosystems reduces soil water availability and, subsequently, inhibits the 
primary productivity of the vegetation [3]. Vegetation productivity is of great economic importance 
in many regions of dryland ecosystems [2]. The Normalized Difference Vegetation Index (NDVI) 
is often used as a proxy for vegetation productivity [8,19]. Moreover, human activity, such as 
agricultural and industrial development, has been a principal factor in the modification of the 
ecohydrological system [4,20–24]. 

In order to improve our understanding of ecohydroclimatologic dynamics, several numerical 
weather prediction systems and land surface models have been developed over the last few 
decades. The models range in complexity from simple water balance equations to complex physical 
parameterization of land-atmosphere interactions. In addition, the advent of remote sensing brought 
the capability to continuously collect time series of spatially-explicit quantitative data on  
land-atmosphere interactions at regional and global scales at regular time intervals [25].  
Model-derived and remote sensing land surface and climatological data have been particularly 
critical in data-scarce regions of the world. Several remote sensing-based ET methods are currently 
available that, according to Courault et al. [26], can generally be grouped into: direct methods that 
use thermal infrared (TIR) directly into simplified semi-empirical models; deterministic methods 
that use assimilation procedures and combine different remote sensing bands ingested into complex 
models to estimate ET; the inference (vegetation indices) method that uses remote sensing data to 
compute the reduction factor, such as the crop coefficient, to compute with reference to 
evapotranspiration for the estimation of actual evapotranspiration; and the residual methods (of the 
energy budgets),which use the spatial variability in remote sensing images to calculate the surface 
energy balance equation and attempt to minimize the use of atmospheric data. Most of the currently 
operational remote sensing-based ET models such as the Surface Energy Balance Algorithm 
(SEBAL) [27], Surface Energy Balance System (SEBS) [28], Simplified Surface Energy Balance 
(SSEB) [29] and Operational Simplified Surface Energy Balance (SSEBop) [30] are in this 
category. A more detailed discussion on the different ET methods can be found in Calgano et al. [31].  

The scarcity of reliable and openly distributed in situ data in the Nile Basin region means that 
only a few basin-scale studies are available so far; and most of those studies have to rely on model 
and remote sensing data [32,33]. Previous works on ET in the region include those conducted at  
field-scales [34,35] or high resolution imagery [16,36,37], or regional/basin-scale [33–50],  
or the continental/global-scale [17,51,52]. Continental- and regional-scale trend analysis conducted 
at 0.5° to 1.0° resolution indicated a downward trend in ET over the past few decades in substantial 
parts of the Nile Basin region [17,51,52]. However, some studies of localized areas, like parts of the 
Nile Delta [38], that used moderate resolution satellite data suggest an increase in ET over the last 
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few decades. Previous studies in the region focused either on trends in ET dynamics [51] or the 
relationship between climate and ET [17]. This work attempts to add to this growing scientific 
literature by analyzing the variability in actual evapotranspiration (referred to as ET in this paper) 
and its relationship with climate, land cover and vegetation productivity in the Nile Basin using  
satellite-derived and land surface models during 2002–2011. 

Using a hybrid combination of satellite-derived and modeled data, we present basin-wide 
geographically-distributed ET dynamics and the drivers, a comparison between thermal-based and 
NDVI-based ET in different climate zones and land cover and the ET-vegetation interaction in the 
basin during the period of 2002–2011. The data used are long-term records of thermal-based 
(SSEBop (Simplified Surface Energy Balance Operational), [30]) and NDVI-based ET (MOD16 
(MODIS Terrestrial ET Product), [53–55]), satellite-driven rainfall (TRMM (Tropical Rainfall 
Measuring Mission), [56]) and vegetation (NDVI derived from MODIS Nadir Bidirectional 
Reflectance Distribution Function (BRDF)-Adjusted Reflectance, NBAR, [57]). 

2. Materials and Methods 

2.1. Study Area  

The Nile Basin (Figure 1a) is located in northeastern Africa and extends from latitude 4°S to 32°N 
and from longitude 21°30 E to 40°30 E. The basin is home to the River Nile, which drains an area of 
about 3.3 million km2 (~10% of the continent’s landmass). The basin’s land cover is dominated by 
shrublands and woodlands (37%) and bare soils (30%), while the remaining is irrigated and rainfed 
agricultural land (11%), grasslands (10%), forest cover (7%), wetlands and lakes (3%) and a 
fraction of it covered with built-up areas [6]. Subsequently, the spatial distribution of vegetation 
productivity in the basin is highly variable, as illustrated in Figure 2d. Regions with predominantly 
high vegetation productivity are the Equatorial Lakes Region (Zones VIII and IX), South Sudan (VI) 
and the western part of the Ethiopian Highlands (Zone VII). Except for the Nile Delta (Zone I) and 
the Nile Valley river corridor (Zone II), the rest of the basin in Zones II, III and IV shows very low 
vegetation productivity. 

Rainfall distribution in the basin (Figure 2c) is mainly driven by the seasonal fluctuation of  
the Inter-Tropical Convergence Zone (ITCZ) and its interaction with topography [58,59]. A 
pronounced north-south rainfall gradient ranging from almost no rain over Lake Nasser in Egypt 
(Zone II) to rainfall totaling ~2100 mm/yr in Gore, Ethiopia (Zone VII) lead to the climatic 
classification of the basin into nine climate zones (Figure 1, [58]). Low mean annual basin rainfall 
(~1046 mm/yr) in only geographically-limited regions means that the Nile River Basin has one of 
the lowest discharges compared to other major river basins in the world [5,6]. 

Evaporative losses in the basin are extremely high because the headwaters of the river primarily 
originate in the tropics; and because the river stagnates in large lakes (Lake Victoria, Lake Tana, 
Lake Albert), extensive swamps (the Sudd in South Sudan), artificial impoundments in arid 
environments (Lake Nasser/Nubia in Egypt/Sudan, Jebel el Aulia in Sudan) and meanders through 
arid and hyper-arid ecosystems [5,6]. Annual ET estimates (Figure 2a,b) in the basin range from 
<~20 mm/yr in the hyper-arid and arid regions (Zones II, III and IV) to about >~1400 mm/yr in the 
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equatorial and central basin regions (Zones VI and VIII). In the Nile Delta (Zone 1), where rainfall is 
minimal and agriculture depends entirely on irrigation, annual ET ranges between ~700–1100 mm/yr. 
The Nile Basin is drained by two principal tributaries, the Blue Nile (from the Ethiopian Highlands, 
which overall contribute ~86% of the total inflows to the Main Nile) and the White Nile (from the 
Equatorial Lakes Region, contributing the rest) that join at the confluence in Khartoum, Sudan, to 
form the Main Nile River [58–62]. River Atbara drains the northern Ethiopian Highlands and is the 
last tributary to join the Main Nile (Figure 1a). 

Figure 1. The Nile Basin. (a) Delineated zones with roman numerals represent rainfall 
regimes from Camberlin [58]. (b) Mean monthly rainfall (mm) from TRMM,  
2002–2011 for each climate zone. 

(a) 
  



357 
 

 

Figure 1. Cont. 

(b) 

Figure 2. Long-term mean annual estimates (mm) of (a) the Simplified Surface Energy 
Balance Operational (SSEBop) ET; (b) MOD16 ET; (c) TRMM rainfall; and (d) long-
term mean annual NDVI (NDVI > 0); 2002–2011.  
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2.2. Data  

2.2.1. Thermal-Based Data (SSEBop ET) 

Senay et al. [29] produced the Simplified Surface Energy Balance (SSEB) model using thermal 
data for uniform agricultural fields. Later versions integrated additional information on topography, 
latitude and differences between land surface temperature and air temperature to enhance the  
model [63,64]. The SSEBop ET algorithm is an operational parameterization of the SSEB model 
that uses MODIS land surface temperature (LST) and model-derived meteorological parameters to 
produce a gridded ET product [30]. For a given day and location, the SSEBop approach assumes: 
(i) a near-constant temperature discontinuity between bare dry surface and atmosphere year to year 
under clear sky conditions; and (ii) clear sky net radiation as the main driver of surface energy 
balance [30]. The SSEBop algorithm uses NDVI for a one-time model parameterization to establish 
the upper and lower boundary conditions for LST; however, the algorithm does not directly include 
NDVI values in the computation for ET estimation [30]. The method has been tested using 14-year 
MODIS data from the United States, Africa and Southeast Asia and has been validated 
comprehensively over the Conterminous U.S. (CONUS) against flux tower observations, water 
balance ET and MOD16 [65]. The data are available at 1-km resolution 8-day totals from the U.S. 
Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. 

2.2.2. NDVI-Based Data (MOD16 ET)  

The MODIS 1-km spatial resolution Terrestrial ET Product for the Nile Basin [53] is acquired 
from the Nile Basin Initiative (NBI, [66]). MOD16 data are available at 8-day, monthly and annual 
time scales. The MOD16 algorithm employs the Penman–Monteith ET model and utilizes MODIS 
products, including 14 land cover types, Leaf Area Index/Fraction of Photosynthetically Active 
Radiation (LAI/FPAR), and white sky-albedo for the estimation of ET [54,55]. In addition to the 
vegetation surface-based algorithm employed in the previous global MOD16 ET algorithm, the 
improved version uses additional Terra MODIS daytime LST, NDVI and Enhanced Vegetation 
Index (EVI) data to estimate ET over deserts, urban areas, inland water bodies, such as rivers and 
lakes, as well as vegetated surfaces, and is produced specifically for the Nile Basin [53]. 

2.2.3. MODIS NDVI Data  

For vegetation data, 1-km spatial resolution, 8-day NDVI composites were derived from  
the red (0.620–0.670 m) and near-infrared (0.841–0.876 m) bands of the MODIS Nadir  
BRDF-Adjusted Reflectance (NBAR) Product (MCD43B4, version 4) for 46 observations per year 
for the period from 2002 to 2011. MCD43B4 data are 16-day composites generated using 
acquisitions from MODIS onboard both Terra and Aqua platforms. The overlapping by 8-days of 
two successive composites resulted in the availability of one image every 8 days. The NBAR data 
provide an improved surface reflectance product with reduced cloud and aerosol contamination, 
with view angle effects removed [57]. The data are freely available via the National Aeronautics 
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and Space Administration (NASA) next generation metadata and service discovery tool,  
Reverb [67]. 

2.2.4. TRMM Rainfall Data 

In data-scarce regions, such as the Nile Basin, where gauge data are sparse or unevenly 
distributed, and where weather observation networks are deteriorating, satellite rainfall estimates 
provide essential, and at times, the only spatiotemporal information data for multiple time periods at a 
range of spatial scales [68]. In this study, we used the daily TRMM [56] merged high quality infrared 
precipitation product (3B42, V.7). The TRMM-3B42 algorithm combines geostationary infrared, 
passive microwaves and also ground-based gauge data [68]. TRMM-3B42 estimates are produced at 
a 3-hour temporal and a 0.25° spatial resolution; data are acquired from NASA’s TRMM site [69].  

2.3. Methods 

2.3.1. Pre-Processing of Data 

Examination of the data (SSEBop, MODIS ET and NDVI) revealed areas where there is a high 
and low frequency of 8-day time series datasets. Frequency (%) maps of the 8-day time series data 
from each of the three datasets with values greater than zero are included in Figure 3. For this 
analysis, only SSEBop ET (ET > 0), MODIS NDVI (NDVI > 0) and MODIS ET (ET > 0) 
retrievals during 2002–2011 are included. Moreover, while doing inter-comparison and 
correlations, SSEBop pixels where the corresponding MODIS ET and NDVI values are zero are 
also excluded.  

2.3.2. Standardized Anomalies 

To analyze interannual variations, standardized anomalies were computed by subtracting the 
mean of the annual values from the corresponding individual annual values and dividing by the 
standard deviation. Dimensionless standard units of the standardized anomalies (SA) facilitate the 
direct comparison of variations in different geographic locations. Standardized anomalies (SA) 
were categorized into five classes: (i) SA  2: severely dry; (ii) 2  SA < 0.5: moderately dry;  
(iii) 0.5  SA  0.5: normal; (iv) 0.5 < SA  2: moderately wet; and (v) SA > 2: severely wet. In 
this paper, we generally define dryness for SA < 0.5 and wetness for SA > 0.5. 

2.3.3. Inter-Model Comparisons  

Indirect inter-model comparisons of SSEBop and MOD16 estimates were conducted by 
comparing time series of monthly ET estimates (an average of 30 × 30 pixels) from each ET 
dataset over selected land cover (using MODIS land cover and Google Earth for visual inspection) 
with respect to corresponding estimates of vegetation productivity (NDVI). The indirect 
comparison with respect to rainfall was made using time series of annual ET anomalies averaged 
per each of the nine climate zones. Pearson’s product-moment coefficient of linear correlation (r) is 
used to measure the relationship between ET from SSEBop and MODIS ET with vegetation productivity. 
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Figure 3. Frequency (%) of 8-day times series of (a) SSEBop (ET > 0); (b) MODIS 
NDVI (NDVI > 0) and (c) MOD16 (ET > 0) retrievals during 2002–2011. 

 

2.3.4. Trend Analysis 

In order to detect the presence of temporal trends (consistent, one-directional, long-term changes 
over time in ET and rainfall), a linear regression trend test was conducted, where time is the 
independent variable and ET or rainfall is the dependent variable. In order to perform statistical 
inference regarding the slope (trend through time) of a line fitted using the ordinary least-squares 
(OLS) method, the following criteria have to be met [70]: (1) the normality of residuals resulting 
from the linear regression (Shapiro–Wilk test) [71]; (2) homoscedasticity: the variance of the 
residuals must be constant throughout time (Breusch–Pagan test) [72]; and (3) serial independence: 
the residuals should be free from autocorrelation (Breusch–Godfrey test) [73] at lags of up to two 
samples. The linear model in this study was run at an annual time scale for both ET and rainfall for 
the decadal study period, and statistical significance was chosen at the 95% level.  

3. Results 

3.1. Basin-Wide ET Dynamics  

The results of the interannual anomaly analysis, visually illustrated in Figure 4, conducted using 
thermal-based ET data (SSEBop) revealed two temporally distinct dry periods (2002–2005 and  
2009–2011) and a wet period (2006–2008) that characterized ET dynamics in the Nile Basin. About  
30%–50% of the study area (86% of the total basin area) exhibited dryness (negative ET  
anomalies < 0.5) during the dry periods; while a minimum of 40% exhibited wetness (positive ET 
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anomalies > 0.05) during the three consecutive wet years. Basin-wide, the driest years are 2004, 2005 
and 2009 (~40%–50% exhibiting dryness); while 2007 and 2008 constitute the wettest years  
(~50% exhibiting wetness). The degree of severity of dryness/wetness and proportional areal extent 
of affected regions basin-wide and for each of the nine climate zones are summarized in Figure 5. 
Furthermore, the analysis also revealed that the areal extent of high degree severity level dryness 
(negative ET anomalies < 2) and wetness (positive ET anomalies > 2) affected regions do not 
exceed 5% of the study area during the study period (Figure 5a). 

Figure 4. (a–j) Nile Basin ET dynamics: annual ET (SSEBop) standardized anomalies,  
2002–2011. The standardized annual anomalies were computed by subtracting  
the long-term mean (2002–2011) of the annual values from the corresponding 
individual annual values (annual mean) and dividing by the standard deviation. 
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Figure 5. (a–k) Areal extent and degree of severity of annual ET anomalies in the Nile 
Basin during 2002 2011. The bar length represents the proportional area fraction  
basin-wide (BW) and for each climate zone (1–9, Camberlin [59]). Colors represent the 
degree of the severity of dryness and wetness of the standardized anomaly (SA):  
(i) 0.5 < SA  0.5: normal (in gray); (ii) 0.5 < SA  2: moderately wet (light green);  
(iii) SA > 2: severely wet (dark green); (v) 2 < SA  0.5: moderately dry (orange);  
(vi) SA  2: severely dry (red). 

 

3.2. Drivers of ET 

3.2.1. Effects of Climate on ET 

Across the basin, the relationships between ET and TRMM rainfall variabilities are influenced 
by climate, but this relationship also depends on the type of ET data used. Figure 6 shows a time 
series of standardized annual anomalies for SSEBop, MOD16 and rainfall averaged over each of 
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the nine climate zones. Strong interannual variabilities are observed (especially in SSEBop ET and 
rainfall) in temporal harmony with the dry and wet periods across the arid, tropical and equatorial 
regions of the basin. In Zone I, where rainfall is minimal except at northern coastlines, a strong 
negative anomaly was observed in SSEBop ET and rainfall in 2010, while MOD16 ET appears to 
show relatively minimum variability throughout the study period (Figure 6a). Nonetheless, the 
disagreement in the variability between MOD16 ET and rainfall in Zone I is not unexpected, as this 
zone is an extensively irrigated region with minimal rainfall. In Zone II (Figure 6b), the anomalies 
from SSEBop, MOD16 and rainfall all peaked in 2010, while showing relatively minimum 
variability for the rest of the time period. In Zones III and IV, MOD16 and TRMM rainfall show 
temporal harmony during the wet period, both peaking in 2007; while this peak is absent in SSEBop 
(Figure 6c,d). However, MOD16 exhibited temporal disharmony with rainfall anomalies for the 
rest of the year in those zones. In Zones V and VI (Figure 6e,f), with the exception of a few 
discrepancies, SSEBop and rainfall showed agreement. Overall, the variability in annual MOD16 
anomalies in the mainly arid to rainy parts of the basin (Zones V–IX) failed to agree with the 
variability observed from annual SSEBop ET and TRMM rainfall anomalies. On the other hand, a 
statistically significant relationship was observed between zonally-averaged SSEBop ET and  
rainfall variabilities.  

Figure 6. (a–i) Interannual ET and rainfall variabilities per climate zones in the Nile Basin:  
Time series standardized annual anomalies of SSEBop and MOD16 and TRMM  
rainfall averaged over climate zones I–IX, 2002–2011. The standardized annual anomalies 
were computed by subtracting the long-term mean (2002–2011) of the annual values  
from the corresponding individual annual values (annual mean) and dividing by the  
standard deviation. 
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Table 1 shows correlation results between zonally-averaged annual anomalies of SSEBop ET 
versus TRMM rainfall, as well as MOD16 ET versus TRMM rainfall. SSEBop ET anomalies 
showed a weak positive temporal association with corresponding rainfall anomalies in four zones 
(I, II, V and VIII) with the correlation coefficients ranging between r = 0.61 to 0.67 at a statistical 
significance of p < 0.05. On the other hand, corresponding MOD16 ET anomalies showed 
statistically significant correlation with rainfall only in Zone II. The fact that zonal anomalies of 
SSEBop and TRMM exhibited a statistically significant relationship in four of the nine climate 
zones, while that of MOD16 exhibited in only one, indicates that results of the analysis are affected 
by data type. 

Table 1. Relationship between zonally-averaged standardized annual anomalies of 
SSEBop versus TRMM rainfall and MOD16 versus TRMM rainfall for the nine climate 
zones. Pearson’s correlation coefficient (r) and statistical significance (p) is presented. 

Climate  
Zones 

SSEBop vs 
TRMM 

MOD16 vs  
TRMM 

Climate 
Zones 

SSEBop vs  
TRMM 

MOD16 vs  
TRMM 

r, p r, p r, p r, p 

I 
r = 0.65, p = 

0.04 
r = 0.43, p = 

0.21 
V 

r = 0.51, p = 
0.12 

r = 0.09, p = 0.80 

II 
r = 0.63, p = 

0.04 
r = 0.73, p = 

0.01 
VII 

r = 0.55, p = 
0.10 

r = 0.47, p = 0.16 

III 
r = 0.51, p = 

0.13 
r = 0.43, p = 

0.21 
VIII 

r = 0.67, p = 
0.03 

r = 0.01, p = 0.97 

IV 
r = 0.61, p = 

0.06 
r = 0.53, p = 

0.11 
IX 

r = 0.59, p = 
0.07 

r = 0.12, p = 0.74 

V 
r = 0.66, p = 

0.04 
r = 0.19, p = 

0.60 
   

3.2.2. Effects of Vegetation on ET 

The relationship between vegetation productivity dynamics and ET (SSEBop and MOD16) in 
different climate zones is presented in Figure 7. Both similarities and discrepancies were observed 
in a manner that the SSEBop and MOD16 monthly values relate with the seasonal variability of 
vegetation productivity. SSEBop and MOD16 temporally correlate with vegetation productivity in 
Zones VII and V (Figure 7b,d). However, they reveal discrepancies in Zones I and VI (Figure 
7a,c). In Zone I in particular, MOD16 clearly captures the seasonality in vegetation dynamics by 
capturing the two peak seasons, while SSEBop distinctly captures only a single peak season 
(Figure 7a). Generally, MOD16 shows better correlation with vegetation productivity in different 
climate zones with statistical significance of p < 0.001. 

3.2.3. Effects of Land Cover on ET 

Time series of monthly ET estimates from SSEBop and MOD16 from selected land cover/land 
use types (irrigated and rainfed croplands, wetlands and grasslands) is presented in Figure 7. In 
irrigated croplands, monthly estimates of SSEBop and MOD16 show significant inconsistencies in 
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seasonality and magnitude (a difference of ~80 90 mm/month) during the peak season (months of July 
and August), but agree during the rest of the seasons (Figure 5a). However, in rainfed croplands  
(Figure 7b), they show similarity both in magnitude and seasonality. Estimates from SSEBop and 
MOD16 also agree in seasonality in wetlands (Figure 5c) and grasslands (Figure 5d), but differ 
significantly during peak seasons.  

Figure 7. Time series of monthly ET derived from the median of 30 × 30 non-zero 
pixels of SSEBop and MOD16 for selected sites in different land cover types and 
climate zones across the Nile Basin, 2002–2011. Correlation coefficients (r) between 
ET and vegetation (*** (p < 0.001), ** (p < 0.01),* (p < 0.05)); and long-term mean 
annual ET estimates (mm/yr) are presented for (a) irrigated croplands in climate zone I, 
(b) rainfed croplands in zone VII, (c) wetlands in zone VI and (d) grasslands in zone V.  

 

3.3. Trends in ET and Rainfall 

The linear regression temporal trend analysis related annual ET and rainfall to time for the 
decade of 2002–2011 as illustrated in Figure 8. The ET decadal trend map (Figure 8a) revealed  
a non-significant trend at 95% statistical significance level for nearly the entire basin, except for a 
few small, mostly scattered, localized areas. 

Of the total basin region with valid ET pixels, only 2.3% and 3.4% of the pixels were 
characterized as significantly downward and upward trends, respectively, at the 95% statistical 
significance level. The regression test also detected trends in the remaining regions of the study 
area (~94%, 40% negative, 54% positive), but those are not statistically significant. Nonetheless, 
interpretation of the results from the linear regression trend test should cautiously take into account 
the relatively short study period of 10 years. 
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The regions of central Uganda in the Equatorial Lakes Region in Zone VIII indicated the most 
conspicuous area characterized by downward trends (Figure 8), while limited and scattered areas in 
the western Ethiopian Highlands (Zone VII) and eastern Sudan (Zone V) also revealed downward 
trends. Significant upward trends characterized very limited and localized areas and were scattered 
across the regions of central Sudan and South Sudan (Zones V and VI). In the northern part of the 
basin, the Nile Delta (Zone I) and the Nile Valley (Zone II) regions showed largely no-significant 
trend, except in the eastern/western fringes of the Nile Delta, which showed significant upward 
trends. Figure 8b illustrates the trend analysis results for rainfall across the basin. The rainfall trend 
map reveals detected downward rainfall trends in Zone VIII, southern parts of Zone VI, eastern parts of 
Zone V and scattered areas in western parts of Zone VII. However, no statistically significant upward 
trends in rainfall were detected in the basin (Figure 8b). 

Figure 8. ET and rainfall trends. Linear regression trends for annual (a) SSEBop ET 
and (b) TRMM rainfall in the Nile Basin during 2002–2011. Colors represent the trend 
direction and statistical significance: (i) significantly upward, (p < 0.05, dark green);  
(ii) upward, not significant (p  0.05, light green); (iii) significantly downward trend  
(p < 0.05, red); and (v) downward, not significant (p  0.05, yellow). 
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4. Discussion 

4.1. ET Dynamics  

The interannual SSEBop ET anomaly maps presented in Figure 4 showed basin-wide ET dynamics 
during the study period. While 2004 and 2009 were found to be relatively the most dryness-dominated 
years of the decade (2002–2011) basin-wide, 2009 particularly stood out as the driest year when key 
headwater regions of the basin exhibited considerable dryness (Figures 4c,h and 5a). Viste et al. [74] 
recently noted 2009 as the driest year of the region in nearly three decades where large-scale 
drought patterns dominated large parts of east Africa. Key headwater regions of the basin that were 
considerably affected by dryness in 2009 included the Blue Nile basin (Zone VII, ~70% exhibiting 
dryness), the Tekezze/Sobat basin (eastern parts of Zone V, ~80% exhibiting dryness) and the 
Equatorial Lakes Region that includes Lake Kyoga-Albert-Aswa basin (Zone VIII, >60% exhibiting 
dryness) and Lake Victoria basin (Zone IX, >20% exhibiting dryness). Furthermore, the Blue Nile 
basin region of the Ethiopian Highlands (Zone VII) exhibited dryness in 2002/2004 (>40% 
exhibiting dryness) and 2003/2009 (>70% exhibiting dryness). As the Blue Nile basin region 
provides a substantial portion of the Nile water to the basin, substantial droughts in Zone VII could 
have consequences downstream. The Equatorial Lakes Region exhibited considerable dryness in 
2005 (>70% of Zones VIII/IX exhibiting dryness), 2009 (>60% of Zone VIII exhibiting dryness) and 
2010 (~60% of Zone IX exhibiting dryness). The extensive dryness (>70% of each zone) in the lower 
parts of the basin (Zones VI, VIII and IX) in 2005 is probably the consequence of a rainfall deficit in 
the region [75].  

The consequence of extensive dryness basin-wide and, particularly, in the key headwaters of the 
Nile Basin in 2009 manifested downstream in Zone I in the Nile Delta in 2009 (60% exhibiting 
dryness) and 2010 (80% exhibiting dryness and 60% severe dryness), as illustrated in Figures 4h,i 
and 5i,j. Because rainfall in Zone I is minimal (Figure 1b), a plausible explanation for the 
considerable dryness in 2009 and 2010 in the Nile Delta is a possible economization of irrigation 
water, as inflow into the Aswan High Dam Reservoir declined in 2009. 

4.2. ET Drivers  

The relationship of the zonal average of annual anomalies of SSEBop ET and TRMM rainfall 
per each climate zone (Figure 6) overall suggest that rainfall drives ET variability in the region, 
albeit there are a few discrepancies, depending on the climate zone. However, this is not consistent 
with the results observed from MOD16 ET to rainfall relationship. Moreover, because climate 
Zone I is principally and heavily irrigated agricultural field, where rainfall is minimal, no 
correlation is expected between rainfall and ET. Nonetheless, SSEBop anomalies showed 
statistically significant strong temporal harmony with rainfall anomalies in both arid and rainy 
regions (in four of the nine climate zones with r = 0.6 at p < 0.05); while MOD16 anomalies 
showed no statistically significant correlation with rainfall in eight of the nine climate zones  
(Table 1). The analysis clearly showed that the temporal relationship between ET and rainfall 
anomalies is more pronounced with SSEBop ET than MOD16 ET anomalies. This generally 
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positive relationship between SSEBop ET and rainfall anomalies is in general agreement with  
Jung et al. [17], who recently showed a strong relationship between ET and soil moisture 
anomalies in east Africa.  

The correlations between monthly ET versus vegetation productivity (Figure 7) depict the 
degree to which seasonal and interannual variabilities between the two variables are related. The 
strongest and statistically significant (p < 0.001) correlations, on the order of r = 0.7 (with SSEBop) 
and r = 0.9 (with MOD16), were observed in climate Zones V and VII; while the weakest 
correlations were in climate Zone I. The SSEBop monthly ET showed a negative correlation in 
Zone I and failed to temporally correlate with one of the two peak vegetation productivity seasons. 
This negative correlation could be the result of one or a combination of multiple reasons including 
climate (rain in Zone I is minimal), types of primary inputs data and the parameterization used in 
the model. In climate zones that get a fair amount of rain, however, both the SSEBop and MOD16 
temporally correlated well with the seasonal variability in vegetation productivity with little 
discrepancies and stronger correlations. 

Investigation of monthly ET variabilities from SSEBop and MOD16 over selected land cover 
types is presented in Figure 7. An analysis of monthly ET variability with respect to land cover 
revealed that the SSEBop and MOD16 estimates differed over irrigated croplands, grasslands and 
wetlands, but agreed in rainfed croplands. SSEBop showed that wetlands have the highest mean 
annual ET (1468 mm/yr), followed by irrigated croplands (985 mm/yr), rainfed croplands (564 mm/yr) 
and grasslands (550 mm/yr). On the other hand, for MOD16, the highest annual ET is from irrigated 
croplands (1166 mm/yr) followed by wetlands (1026 mm/yr), rainfed croplands (505 mm/yr) and 
grasslands (366 mm/yr). The largest discrepancy between SSEBop and MOD16 in annual estimates 
(a difference of ~440 mm/yr) was observed over wetlands (Figure 7). On the other hand, monthly 
ET variability appeared to be high over cropped fields (very high for MOD16 over irrigated 
croplands), while small over wetlands for SSEBop and over grasslands for MOD16. This 
discrepancy in estimates of ET between SSEBop and MOD16 over different land cover types has 
also been shown by other researchers. Velpuri et al. [65] validated the two products in the CONUS 
and showed that both SSEBop and MOD16 underestimated over croplands. However, we found 
that over irrigated croplands, only SSEBop underestimated, while both gave similar estimates over 
rainfed croplands. Further, we found that monthly MOD16 estimates over irrigated croplands in 
Zone I generally agreed quantitatively with monthly estimates available in the literature [15]. On the 
other hand, SSEBop has significantly higher estimates than MOD16 over grasslands, especially during 
the peak seasons (Figure 7d). Velpuri et al. indicated that SSEBop provides a better estimate over 
grasslands than MOD16. Moreover, over deep-rooted vegetation cover, such as forest, Velpuri et 
al. found that SSEBop and MOD16 have an accuracy of R2 = 0.72 and R2 = 0.56, respectively, 
compared with ground-based observations. The discrepancy in monthly estimates between the two 
estimates persisted over wetlands (Figure 7c). While MOD16 estimates significantly and 
irregularly vary seasonally and annually from ~200 mm/month to ~100 mm/month, MOD16 
estimates consistently stayed within 80–120 mm/month. A plausible reason for the significant 
difference between the two estimates could be in the input datasets that the two ET algorithms use: 
SSEBop uses land surface temperature as its primary input and is independent of the impact that 
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frequent flooding has on vegetation that may affect the ET. On the other hand, MOD16 uses 
vegetation information in its algorithm, and consequently, the ET results could reflect the changes 
in vegetation. 

4.3. Trends in ET and Rainfall  

The detected temporal trend results reveal that the overall annual ET trend during 2002 to 2011 
in the Nile Basin can be characterized as no-significant trend, except for a few parts (Figure 8). The 
most conspicuously affected region is the Equatorial Lakes Region, where statistically significant 
downward trends were observed in substantial areas of Zone VIII (the region in Uganda surrounded  
by the tri-lakes: Lakes Victoria, Albert and Kyoga). Western parts of the Ethiopian Highlands and 
eastern Sudan (Zones V and VII) also showed a few defragmented localized regions of a downward 
trend. In the northern part of the basin, no significant trends are detected, except around the fringes 
of the Nile Delta (Zone I). The fringes of the Nile Delta normally have less ET compared to the 
inland regions of the delta, as recently shown by Simonneaux et al. [41], but show an upward trend. 
This finding is in agreement with other studies that indicated increasing ET and vegetation 
productivity in newly reclaimed desert lands in the fringes of the Nile Delta following the 
expansion of irrigation agriculture in the last few decades [9,39,40,76,77]. On the other hand, the 
trend analysis on rainfall data showed no significant upward trend, but parts of Uganda (Zone 
VIII), South Sudan (Zone VI), the western Ethiopian Highlands (Zone VII) and eastern parts of 
Sudan (Zone V) showed a statistically significant downward trend in rainfall. 

4.4. Uncertainties, Errors and Accuracies 

Some degree of uncertainty in any model-based or satellite-derived parameter estimates is 
inevitable. Sources of uncertainties in remotely sensed ET estimates could be attributed to 
uncertainties in input data that can introduce biases in ET estimates, limitations and biases in the 
parameterization in the algorithm, cloud cover, errors arising from spatial and temporal scaling 
approaches, as well as influences from biophysical and geophysical factors, such as land cover and 
climate. Comparisons with ground-based measurements (which themselves have a reported 
uncertainty of 10%–15%) indicate that the various remote sensing techniques for estimating ET 
have uncertainties of 15%–30% [78,79]. A review of about 30 published validations of remotely 
sensed ET against ground-based flux towers reported an average Root Mean Square Error (RMSE) 
of just over 50 W/m2 and relative errors of 15%–30% [65]. In this study, the major sources of 
uncertainties come from satellite-derived evapotranspiration estimates, rainfall estimates, 
vegetation indices, the limitations of the linear regression trend method and the short time available 
for the trend analysis. 

A comprehensive review of the accuracies and uncertainties of SSEBop ET and MOD16 ET 
over different land cover types and climate zones with respect to field-based measurements in the 
U.S. are provided by Velpuri et al. [65]. The mean basin-scale uncertainty levels in SSEBop ET 
data are much lower than the reported uncertainty levels (up to 50%) of the mean land ET obtained 
from remote sensing data, up-scaled tower measurements, land surface models and reanalysis 
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datasets [79,80], illustrating the reliability of monthly SSEBop products for basin-scale ET 
estimation [65]. Mu et al. [53] provided a performance evaluation of the MOD16 estimates for the 
Nile Basin, using the basin-scale average of runoff and gridded precipitation data and running the 
improved algorithm in other regions of the world where there is sufficient availability of the flux 
tower data. 

The relationship between annual anomalies of ET and rainfall in different climate zones was 
investigated using datasets of varying spatial scales. The ET datasets have a spatial resolution of  
1-km, which is much higher than the 25-km resolution of the rainfall data. However, the 
magnitudes of the uncertainties that could arise from using data of different spatial resolutions 
diminish, as the anomalies were averaged per each climate zone. Moreover, remote sensing data 
are subject to systematic errors with consistent bias that overall have little impact on the long-term 
anomalies. With regards to the linear regression trend analysis, readers should be cautious in 
interpreting the significance of the linear trend results, since we did not test the normality of the 
residuals, the homoscedasticity and serial independence of the data before performing the statistical 
inference regarding the slope, as recommended by de Beurs and Henebry [70]. Nonetheless, the 
trends generally remain unbiased, even if those assumptions are not met; the limitations with 
respect to uncertainties in the significance of the estimated parameters, however, remain [70]. 

5. Conclusions 
 

This paper characterizes variation in actual evapotranspiration (ET) and investigates its relation 
with vegetation productivity in the Nile Basin for the period of 2002–2011. Hybrids of both  
satellite-derived and modeled ET datasets, the NDVI-based MOD16 and the thermal-based 
SSEBop ET datasets were used to comparatively analyze ET variability in relation to vegetation 
productivity (NDVI), climate (rainfall) and land cover. The analysis of interannual anomalies using 
thermal-based ET revealed temporally distinct mini-episodes of dry (2002–2005, 2009–2011) and 
wet (2006–2008) periods that dominated 40%–50% of the study area; with 2007 and 2009 being 
the wettest and driest years, respectively. An investigation of the relationship between monthly ET 
variability with vegetation productivity indicated that NDVI-based ET had stronger positive 
correlations (r = 0.77 to r = 0.97) with vegetation than thermal-based ET (r = 0.52 to r = 0.73) at a 
statistical significance of p < 0.001, particularly in rainfed regions. This finding is not unexpected, 
as NDVI data are the primary input in the NDVI-based ET data. The analysis of the relationship 
between annual anomalies of ET and rainfall in different climate zones showed that thermal-based 
ET anomalies correlated positively (r = 0.6 at p < 0.05) with corresponding rainfall anomalies in 
two of the six investigated rainfed climate zones; whereas NDVI-based ET showed no significant 
relationship. A comparison of thermal-based and NDVI-based ET estimates over selected land 
cover types revealed minor disagreements over rainfed croplands (60 mm/yr higher for thermal-
based ET), but a significant divergence over wetlands (440 mm/yr higher for thermal-based ET). 

The results in this study confirm previous regional-scale drying and greening periods in the 
region. This paper used rainfall as a proxy for soil moisture, but this may not always be valid, 
particularly in the wetter parts of the basin; as a result, the use of soil moisture data, such as Soil 
Moisture and Ocean Salinity (SMOS, Kerr et al. [81]), should be considered. The trend analysis 
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conducted in this study is limited to 10 years based on the availability of the dataset used, which 
begins at the start of the millennium. However, the trend test could reveal long-term changes in the 
basin if the analysis could be extended using long-term evapotranspiration data, such as the  
1983–2006 global ET dataset produced by Zhang et al. [82]. In order to improve the accuracy of 
remote sensing data, the findings need to be verified with long-term field measurement data. 
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Remotely Sensed Monitoring of Small Reservoir Dynamics:
A Bayesian Approach
Dirk Eilander, Frank O. Annor, Lorenzo Iannini and Nick van de Giesen

Abstract: Multipurpose small reservoirs are important for livelihoods in rural semi-arid regions. To

manage and plan these reservoirs and to assess their hydrological impact at a river basin scale, it

is important to monitor their water storage dynamics. This paper introduces a Bayesian approach

for monitoring small reservoirs with radar satellite images. The newly developed growing Bayesian

classifier has a high degree of automation, can readily be extended with auxiliary information and

reduces the confusion error to the land-water boundary pixels. A case study has been performed in

the Upper East Region of Ghana, based on Radarsat-2 data from November 2012 until April 2013.

Results show that the growing Bayesian classifier can deal with the spatial and temporal variability

in synthetic aperture radar (SAR) backscatter intensities from small reservoirs. Due to its ability to

incorporate auxiliary information, the algorithm is able to delineate open water from SAR imagery

with a low land-water contrast in the case of wind-induced Bragg scattering or limited vegetation on

the land surrounding a small reservoir.

Reprinted from Remote Sens. Cite as: Eilander, D.; Annor, F.O.; Iannini, L.; van de Giesen, N.

Remotely Sensed Monitoring of Small Reservoir Dynamics: A Bayesian Approach. Remote Sens
2014, 6, 1191–1210.

1. Introduction

To overcome droughts and ensure water availability, the rural population in many semi-arid areas

of the world relies on small reservoirs [1]. In this context, small reservoirs are defined as reservoirs

with a surface area smaller than 100 hectares. Typically, these reservoirs are embanked streams that

capture water in the wet season, to be made available during the dry season. Small reservoirs are

used for year-round irrigation, fishery, cattle and domestic purposes.

Currently, the cumulative impact of small reservoirs on water resources at a river basin scale is

still debated [2], and the sustainability of small reservoirs under climate change is unknown [3]. In

order to plan, manage and improve our understanding of small reservoirs, it is important to monitor

the water storage dynamics. Ground-based surveys are both labor intensive and time consuming.

Alternatively, small reservoir storage can be measured from space, based on remotely sensed surface

area measurements in combination with regional area-volume equations, which can be derived from

in situ bathymetric measurements [4–6]. For large lakes and reservoirs, water stage measurements

from space have recently become available [7,8], which enable the estimation of water storage

changes using only remote sensing observations.

Water surface areas can be delineated through optical imagery (e.g., MODIS, SPOTand Landsat),

as well as synthetic aperture radar (SAR) imagery (e.g., Envisat, ALOSand Radarsat). A common

practice for optical-based water surface delineation is to put a threshold on a vegetation [9] or water
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index [10,11] for decision making. For large water bodies, MODIS yields good results, but the

spatial resolution is too low for small reservoirs. Instead Landsat imagery (30-m spatial resolution)

has successfully been applied using various techniques in Ghana [5], Zimbabwe [6], India [12] and

Brazil [13]. A strong limitation of optical imagery is its dependence on cloud- and smoke-free day

acquisitions, which makes its application for operational monitoring very limited. For the detection

and the creation of a base map, optical imagery is, however, very suitable [14].

The application of SAR imagery for small reservoir monitoring has recently been studied based

on Envisat ASARimages [4,14]. Smooth open water acts as a specular reflector, reflecting most of

the radar signal away from the sensor. Radar backscatter intensities from open water are therefore

generally lower than backscatter intensities from the surrounding land, which enables the delineation

of open water. The roughness of the water is very variable and influences backscatter intensities

over time and space. Difficulties arise when wind-induced Bragg scattering enhances backscatter

from the open water or when the contrast between land and water deteriorates, due to the absence

of vegetation on the land surrounding a small reservoir at the end of the dry season [14]. Vegetation

in the tail-end of small reservoirs has a different signature from open water, which may result in an

error in the delineation [4]. Based on an earlier study [14], SAR imagery is found to be suitable for

the delineation of small reservoirs in the wet season, but to be affected by wind and a low land-water

contrast in the dry season. To date, no weather-independent method that yields good year-round

results has been developed for remotely sensed areal measurements of small reservoirs.

In this paper, we propose a new Bayesian algorithm to delineate small reservoirs. The algorithm

can deal with a large variability in backscatter intensities from open water, exploits information

contained in multi-polarized SAR imagery and readily allows for the input of auxiliary information,

e.g., temporal information about the small reservoir area. For this study, Radarsat-2 SAR images of

the Upper East Region (UER), Ghana, were acquired. The Radarsat-2 has an improved resolution

compared to Envisat ASAR imagery and offers full polarimetric data.

2. Datasets

2.1. Ground Truth

The study area is located in the Upper East Region (UER) of Ghana; see Figure 1. The UER has

a semi-arid climate, characterized by a five month, mono-modal wet season and an average rainfall

of 1,044 mm/yr over the past 40 years.

Fieldwork was conducted in November 2012. This period is at the start of the dry season, when

the water levels in the small reservoirs are still around their upper limits. In total, 29 small reservoirs

in the Kasena Nankana West, Kasena Nankana East, Bongo and Bolgatanga districts were visited,

of which 26 are covered by all acquired images. All reservoirs were delineated in the field using

a Garmin eTrex HCx handheld GPS, with an accuracy of 10 m (95% typical). With a simple

walk around the reservoir, waypoints were taken at the land-water boundary in such a way that

interpolating between the points yielded a good delineation of the reservoir. The boundary of the
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reservoir at the tail-end streams was defined as the point of a 10-m stream width. The area of the

visited small reservoirs varied from 2.5 ha to 22.6 ha.

Figure 1. The study area in the Upper East Region of Ghana, overlaid with a base map

of small reservoirs in the region.

2.2. Precipitation Data

Rainfall series with a 15-min temporal resolution were obtained from a meteorological station

in Navrongo (UER, Ghana) for the period from January until April 2013. The rainfall series were

converted to daily rainfall and are presented in Section 4.3.

2.3. Radarsat-2 SAR Data

In this study, the small reservoir delineation is based on one or more polarizations from full

polarimetric fine resolution Radarsat-2 data. First, two fine quad-pol images covering the study area

were acquired at the start of the dry season in November 2012, followed by a time series of Wide fine

quad-pol images from January until April 2013. The 2012 acquisitions allow for comparison with

the ground truth data, while the time series allows for a temporal analysis and covers different dry

season backscatter scenarios. Details about the acquired images are given in Table 1.
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Table 1. Radarsat-2 imagery acquired for this study.

Date Year Time/Pass Beam Incidence Angle Pixel Spacing
Mode (degree) (rg× ax) (m)

18 November 2012 05:44:13/desc FQ31 48.3–49.4 5.14 × 6.28

21 November 2012 05:56:37/desc FQ10 29.1–30.9 5.19 × 9.26

15 January 2013 05:52:27/desc FQ17W 35.7–8.6 5.6 × 7.83

25 January 2013 06:00:44/desc FQ4W 21.3–24.8 4.6 × 11.94

8 February 2013 05:52:27/desc FQ17W 35.7–38.6 5.6 × 7.83

18 February 2013 06:00:43/desc FQ4W 21.3–24.8 4.6 × 11.94

4 March 2013 05:52:27/desc FQ17W 35.7–38.6 5.6 × 7.83

14 March 2013 06:00:43/desc FQ4W 21.3–24.8 4.6 × 11.94

28 March 2013 05:52:27/desc FQ17W 35.7–38.6 5.6 × 7.83

7 April 2013 06:00:44/desc FQ4W 21.3–24.8 4.6 × 11.94

21 April 2013 05:52:27/desc FQ17W 35.7–38.6 5.6 × 7.83

3. Methods

3.1. Pre-Processing SAR Imagery

All images of one beam mode were co-registered and resampled to a grid of 5 m × 5 m

using the open source Next ESA SAR Toolbox (NEST) software by the European Space Agency.

Some additional dedicated effort in MATLAB was required to co-register the stacks from different

beam modes. This was done in two steps. Firstly, absolute verification of image geolocation was

carried out on the November acquisitions (FQ10 and FQ31 ), hereby referred to as the reference,

which showed consistent agreement with the GPS ground-truth data. Secondly, the residual shifts

between the FQ04W and FQ17W datasets and the reference acquisitions were retrieved by incoherent

speckle correlation [15] procedures between the reference images and the first image of each dataset.

Cross-correlation of intensities performed block-wise throughout the image returned almost uniform

patterns of a few pixel shifts, due also to the relatively small elevation dynamics (100 m) of the scene.

The shifts were averaged and used to achieve stack co-registration. A simple moving average filter

(3 × 3 pixels) was applied on backscatter intensities to remove speckle by increasing the number

of looks.

From the literature [16], it was found that the delineation is best performed within a reservoir

mask in which the reservoir area and total area of the surrounding land are of a similar size. Here, the

masks were created by manually selecting a rectangular area around a small reservoir at full capacity,

in such a way that it contained a similar number of water and land pixels.

3.2. Growing Bayesian Classifier

The newly developed growing Bayesian classifier (gBC) [17] is used for the delineation of small

reservoirs. The gBC classifies a pixel based on the maximum a posteriori probability (MAP), which
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is calculated from a multivariate Gaussian likelihood function, multiplied by one or more conditional

priors. The Gaussian model is justified by the application of the algorithm to logarithmic intensities.

In previous work [18], it was outlined that the Gamma distribution, typical of homogeneous areas

of fully developed speckle, tends toward a log-normal behavior for an increasing number of looks.

The multivariate likelihood function exploits information contained in multi-polarized SAR imagery,

while the conditional priors update the likelihood with auxiliary information. The basic gBC

makes use of one conditional prior, the so-called growing prior, which includes information about

neighboring pixels in the classification. The gBC can readily be extended with auxiliary information,

e.g., temporal information, in the form of a conditional prior, according to the principle of naive

Bayesian image classification [19,20]. Contrary to traditional maximum likelihood, the gBC does not

require a priori training data to calculate the classes’ signatures. Instead, signatures are developed

during the iterative classification procedure based on the growing land and water seeds. The gBC

flow scheme is given in Figure 2.

3.2.1. Basic Growing Bayesian Classifier

The gBC is automatically initiated within the reservoir mask. The land seed is initiated at the two

outer rows and columns. The water seed at the area with the minimum average backscatter intensity,

of a minimum of 3 × 3 pixels, is derived from a moving average filter. If a delineation at the previous

time step is available, the potential water seed area is restricted to the small reservoir area from the

previous time step. All other pixels are initially unclassified. The water seed and land seed are then

iteratively grown, until both classes converge at the land-water boundary, according to the Bayesian

decision rule:

xi ∈
{
ωl; Φ∗

l (xi) > max(Φ∗
w(xi),Φ

∗
u(xi))

ωw; Φ∗
w(xi) > max(Φ∗

l (xi),Φ
∗
u(xi))

}
(1)

where ωk is the class with k ∈ l, w, u for the land, water and unclassified classes, respectively, and

Φ∗
k(xi) the likelihood, Φk(xi), based on the pixel intensity vector, xi, for pixel i multiplied with the

growing prior, P (ωk|νj), which is proportional to the posterior probability, according to:

Φ∗
k = Φk(xi)P (ωk|νj) (2)

where νj is a conditional variable of the growing prior with state j, which is based on the classification

of neighboring pixels; see Table 2. Here, the assumption is made that the likelihood function is

independent of the state of the conditional variable, ν. Note that a pixel is only classified if its

probability of being a member of a class is larger than the probability of remaining unclassified. The

likelihood, Φu(xi), for a pixel to remain unclassified is defined as the minimum of the land and water

likelihood for that pixel. The classification is therefore not governed by the priors alone, but based

on the likelihood computed from the pixel intensity vector.
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Figure 2. Flow diagram for the growing Bayesian classifier: first, the seeds are initialized

(top right) for which a SAR reservoir image is required (top left); then, the iterative

Bayesian classification is performed (right middle); finally, a growing filter is applied

(right bottom); the algorithm can readily be extended with additional information

(left middle).
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Table 2. Growing conditional prior probabilities based on the classification of

neighboring pixels.

Growing Prior ν1 ν2 ν3 ν4

land pixels >=1 >=1 0 0

water pixels 0 >=1 >=1 0

P (ωland) 0.5 0.5 0 0

P (ωwater) 0 0.5 0.5 0

P (ωunclassified) 0.5 0 0.5 1.0

The growing conditional variable, ν (see Table 2), is based on the assumption that, within the

reservoir mask, all water pixels are one connected area, i.e., the small reservoir. The state of the

variable is defined according to the number of neighboring land and water pixels. The prior only

allows for a new water pixel next to an already classified water pixel (the water seed) and for a new

land pixel next to an already classified land pixel (the land seed). The growing prior reduces the

confusion error (the error from incorrect classification of pixels within the spectral area of overlap

between two classes) to the land water boundary, where both classes have an equal prior probability.
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After the classification, a growing filter is applied to classify the pixels that remained unclassified

after convergence of the land and water seeds. Starting from the seeds, all unclassified pixels

connected to the water seed by water pixels are classified as water and all pixels connected to the

land seed by land pixels are classified as land. Land and water pixels that are not connected to the

seed are then reclassified using the same method.

3.2.2. Extended Growing Bayesian Classifier

The gBC can readily be extended with auxiliary information in the form of conditional priors

according to the principle of naive Bayesian classification. In the general case that the basic gBC is

extended with P prior probabilities, Equation (2) becomes:

Φ∗
k = Φk((xi))P (ωk|νj)

P∏
p=1

P (ωk|βp
j ) (3)

where P (ωk|βp
j ) is prior probability p with conditional variable βp

j determined by its state, j.

For this study, an additional conditional variable based on temporal information was developed.

The classification from a previous or subsequent time step is used to update the delineation at the

current time step. This can be very useful information, especially when the land-water contrast

deteriorates. Two temporal conditional variables, τ t−1
i and τ t+1

i , were developed based on the strong

seasonal behavior of small reservoirs, i.e., small reservoirs are replenished in the wet season, and

the water is released for use in the dry season. The states of the temporal variables are based on the

classification of a pixel, i, in the previous and subsequent time step, respectively; see Tables 3 and 4.

Equation (3) then becomes:

Φ∗
k = Φk(x)P (ωk|νj)P (ωk|τ t−1

i )P (ωk|τ t+1
i ) (4)

Table 3. Temporal conditional prior probabilities based on the classification of a pixel in

the previous time step.

Prior τ t−1 τ t−1
1 τ t−1

2 τ t−1
3

Classification in Time Step t-1 Land Water Unclassified

P (ωland) 0.6 0.25 1/3

P (ωwater) 0.2 0.5 1/3

P (ωunclassified) 0.2 0.25 1/3

The temporal priors increase the posterior probability for a pixel of being a member of the same

class as in the previous and/or subsequent time step. If the previous and subsequent classification

of a pixel are equal, the pixel is given a relatively high prior probability of being a member of the

same class. Similar prior probabilities are given for land and water if the class changes from the

previous to the subsequent time step. One exception is formed by pixels classified as water in the

subsequent time step during the dry season. Small reservoir areas do not increase, as long as there is

no rain during the dry season. Based on this knowledge, a prior probability of being a member of the
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water class 1 is given to pixels that are classified as water in the subsequent time step. The temporal

priors allow for the delineation of images with a very low land-water contrast if the previous and/or

subsequent images are correctly classified.

Table 4. Temporal conditional prior probabilities based on the classification of a pixel in

the subsequent time step.

Prior τ t+1 τ t+1
1 τ t+1

2 τ t+1
3

Classification in time step t+1 Land Water Unclassified
prior τ t+1 dry season

P (ωland) 0.5 0 1/3

P (ωwater) 0.25 1 1/3

P (ωunclassified) 0.25 0 1/3

prior τ t+1 rainy season/after rain

P (ωland) 0.5 0.25 1/3

P (ωwater) 0.25 0.5 1/3

P (ωunclassified) 0.25 0.25 1/3

In an operational setting, reservoirs at the current time step, t, can be delineated using prior

P (ωk|τ t−1
k ) based on the classification from the previous time step. Then, the delineation at time step

t-1 can be updated with temporal priors P (ωk|τ t−1
k ) and P (ωk|τ t+1

k ) based on the classified images

at time step t and t-2 The classifications at time step t until t-3 could then further be updated with the

same procedure. However, this only yields a small improvement and would allow for a classification

error to propagate back in time.

4. Results and Discussion

4.1. Polarimetric SAR Remote Sensing of Small Reservoirs for Different Backscatter Scenarios

Four distinct backscatter scenarios for backscatter from small reservoirs are found within the

acquired data series of SAR imagery, i.e., Smooth open water, water with vegetation, wind-induced

Bragg scatter and backscatter during a rain-event. For every backscatter scenario, a sample of land

and water pixels was taken from different reservoirs and its backscatter intensity distribution plotted

(Figure 3). The backscatter intensities, as well as the contrast between land and water are different

for every scenario. This calls for a flexible classification method (a method without fixed thresholds)

and optimal use of the available polarizations.

The optimal combinations of polarizations were evaluated based on the separability between the

land and water class. The separability was calculated from the Jeffries–Matusita (JM) distance [21],

based on the land and water samples for the different scenarios. A JM distance of two indicates

that there is no confusion area (i.e., the spectral area of overlap between two classes) and can

thus perfectly be separated based on backscatter intensity alone. A JM distance of zero means

that the backscatter distributions for both classes completely overlap. The presented combinations
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(see Figure 4) are chosen for comparability and based on operational considerations. Depending on

the choice of SAR mission, single, dual or full polarimetric images can be acquired. In total, 12

combinations were presented: three single polarizations, eight combinations from dual polarization

modes, of which five use polarization intensity ratios, and one full polarimetric combination, in

which the average of the cross-polarizations is used to increase radiometric resolution. The presented

tests were applied on indicators based on channel intensities or intensity ratios only. Further

research should address the use of the coherent polarimetric information for decompositions, such as

alpha-entropy [22] and refined polarization synthesis [23–25], to achieve optimal contrast.

Figure 3. Backscatter intensity distributions and scatter plots for the land and water

classes from the samples of four distinct small reservoir backscatter scenarios, i.e.,
smooth open water, water with vegetation, Bragg scattering and backscatter during a

rain event.
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4.1.1. Smooth Open Water

Compared to land, smooth open water shows lower backscatter intensities, as it acts as a specular

reflector, reflecting most of the radar signal away from the sensor. The high dielectric constant of

water also decreases the penetration depth of the signal, which results in low volume scattering and,

thus, predominantly co-polarized reflection [26]. The discrimination of smooth open water from

land is therefore a simple task [27]. This is in agreement with the results presented here. The lowest

backscatter intensities and smallest confusion area are found in the co-polarized ‘HH’polarization,

while the cross-polarized ‘HV’shows the largest confusion area; see the top row in Figure 3. The JM



390

distances for open water show that a high separability can be obtained from single co-polarized

polarizations (1.6 on average in ‘HH’), and only a small improvement (up to 1.8 for ‘HH, VV,

HH/VV’) is found from adding more polarizations; see also Figure 4. The contrast is optimal in

the case of reeds on the water boundary and land with vegetation, which enhances the delineation

accuracy [14].

Figure 4. Jeffries–Matusita (JM) distances for the samples of three distinct backscatter

scenarios from small reservoirs, where the error bars show the mean, minimum and

maximum JM distances from the different samples.
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4.1.2. Water With Vegetation

This backscatter scenario refers to vegetation within the small reservoir, mainly at the tail-ends,

where grasses and other weeds increase the local surface roughness. This results in higher backscatter

intensities; see the second row in Figure 3. Depending on the type of the vegetation, the double

bounce scattering can also be enhanced. The mean backscatter intensities from these areas are similar

to land in the cross-polarized ‘HV’ and higher than land in the co-polarized ‘HH’ and ‘VV’. Water

with vegetation is therefore difficult to include in the small reservoir delineation [4].

4.1.3. Wind-Induced Bragg Scatter

Bragg scattering occurs when the position of scatterers are aligned parallel with the line of flight

with regular spacing. In this case, the radar backscatter is coherently reinforced depending on the

incidence angle, wavelength and spacing of the scatterers [27,28]. This type of scattering can be

induced by wind waves on the surface of the water, depending on the wind direction and speed.

According to [14,29], Bragg scattering from open water is significant with wind velocities over 9–10

km/h and in specific combinations of wind direction and polarization. Bragg scatter is most apparent

in co-polarized polarizations and small in cross-polarized polarizations, which is in agreement with

the histograms in the third row of Figure 3. Compared to smooth open water, the water distribution
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shows a long tail with high back scatter intensities and, thus, a larger confusion area between the land

and water class. The scatterplot shows the decreased separability between the land and water class

in the case of dual polarization, when the water surface shows patches with Bragg scattering. The

separability in the single co-polarized ‘HH’ deteriorates compared to smooth open water (0.72). The

separability for the cross-polarized polarization is similar to open water; see Figure 4. The value of a

second polarization and polarization combinations becomes visible here, as a clear improvement in

separability is found (up to 1.27 for ‘HH, HV, HH/HV’).

4.1.4. Rain Event

Backscatter intensities from the surface show a significant change during rain events, due to

increased surface wetness. For bare soil, where the dominant backscatter mechanism is surface

scattering, increased backscatter intensities are expected, due to the increased surface wetness.

However, if pools of water start to form, backscatter intensities will decrease, as a larger portion

of the signal will be scattered away. The effect of rainfall on vegetation is smaller, as vegetation

already contains ‘a layer of water’, and there are different operating scattering mechanism on which

rainfall has different effects. If volume scattering is the dominant mechanism, backscatter intensities

can be reduced. Wetness of the top layer increases the portion scattered away from the sensor, and

reduced power is available for the volume scattering mechanism. Areas where surface scattering is

the dominant mechanism show an increase in backscatter intensities [30]. As surface scattering is

the dominant mechanism in the land surrounding small reservoirs, a small increase in backscatter is

observed. These effects are most significant during the rain event, when no evaporation has occurred

yet. At the water surface, rain droplets can cause an increase in surface roughness, which results in

increased backscatter intensities [28]. This is also observed in the sampled reservoirs; see the bottom

row in Figure 3. Since no ground truth is available for the March 28 acquisition, the land sample is

taken from the land outside the known maximum boundaries of the small reservoir, where vegetation

is present. The bare soil surrounding the small reservoirs at this date is not included in the land

sample. Larger confusion areas and, thus, lower JM distances for all polarization combinations are

measured; see Figure 4. This is caused by a larger increase in backscatter intensities from open water

compared to the land with vegetation. The separability between the open water and the surrounding

bare land mainly depends on whether pools of water are formed, in which case, the contrast can

strongly decrease.

4.2. Comparison with Ground Truth

All small reservoirs that were visited during the fieldwork are delineated from the ‘HH, HV’

polarization combination from two Radarsat-2 images, which were acquired within three days from

the ground truth. Since substantial areas of grass and weed vegetation were found inside the small

reservoirs during the fieldwork, the reservoirs were divided into three vegetation content classes:

‘low vegetation’, ‘tail-end vegetation’ and ‘all boundary vegetation’. This classification was based

on photos of the small reservoirs taken during the fieldwork. The delineation (red line) and ground
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truth (yellow line) of two typical reservoirs from each category are projected on Pauli RGBcolor

composite images (Figure 5). Open water (dark areas, low backscatter intensities) are very clear in the

images and easily delineated from the surrounding land (blue and green areas, higher single bounce

and volume scattering). Patches of Bragg scatter (dark blue areas, increased surface scattering) are

also classified as small reservoir, because of the dual polarization combination. The second and

third row show the reservoirs with vegetation in the tail-end and at all boundaries, respectively. The

small reservoir areas with vegetation (red and bright areas, high backscatter intensities and double

bounce scattering) are not classified as small reservoir, because of their very different polarimetric

signature. In all the reservoir images, the open water areas are well delineated by the gBC based on

visual inspection.

Figure 5. Ground truth (yellow line) and delineation (red line) based on the ‘HH,

HV’ polarization combination overlaid on Pauli RGB-images, with red colors for double

bounce, green for volume scatter and blue for single bounce; note that the different color

scales are used for the different Pauli components to enhance the image contrast.
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The results are summarized in Figure 6 with the Differential Area Index (DAI), as used by [6],

and the JM distance based on the ground truth. The figure shows an overall underestimation of the

classified small reservoir area. Compared to the ground truth, an underestimation of 12.8% to 14.8%,

depending on the polarization combination, of the small reservoir area is found for small reservoirs

with low vegetation. This underestimation is larger for the classes with more vegetation. The error

made for delineating open water is expected to be smaller than suggested by these numbers, as the

underestimation is due to different classification errors and a bias towards the land in the ground

truth. First of all, there is an error due to vegetation in the small reservoirs, even in the reservoirs

with ‘low vegetation’; see, e.g., SR141 in Figure 5, where some trees within the reservoir cause an

incorrect classification at the tail-ends. A smaller error is due to the moving average filter, which

reduces noise, but might also cause some boundary pixels to be classified as land instead of water.

Furthermore, there is an error in the ground truth from the inaccuracy of the GPS device. The ground

truth also shows a bias towards the land, due to the fact that the measurements were all taken while

walking around the reservoir as close to the land-water boundary as possible, but on the land side.

The JM distances show a clear trend between the increase in vegetation in the small reservoir and a

decrease in separability. This is due to the increasing confusion area with an increasing vegetation

area in the small reservoir.

Figure 6. Comparison between classified and ground truth areas of all 29 small reservoir

from November 2012, based on the Differential Area Index (DAI) and the Jeffries

Matusita (JM) distance.
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4.3. Image Quality

The quality of the images is determined based on the contrast between the land and water class,

which is calculated from the JM distance based on the classified images. This method for determining

image quality is similar to the numbers of peaks in the backscatter intensity histogram of an image,

as used by [14]. Two quality classes were used, with a threshold for high image quality images
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set to 1.5. This roughly corresponds to the minimum JM distance found for smooth open water for

the ‘HH, HV’ polarization combination; see Figure 4. Within the time series, 170 reservoir images

with high quality and 64 with low quality, of which 18 had substantial Bragg scatter, were found.

Only two high quality images with substantial Bragg scatter were found. The images with Bragg

scatter have an average JM distance of 1.22, while all other images have an average JM distance of

1.58. The acquisitions with Bragg scatter are 25 January, 14 March and 7 April, of which especially

the last two have a significant amount of low quality reservoir images (Figure 7). The acquisitions

with Bragg scatter show higher mean backscatter intensities, but also a larger variability in the ‘HH’

polarization and no significant change in the ‘HV’ polarization. A large variability in backscatter

intensities from open water pixels within the same acquisition is typical for Bragg scattering. Most

reservoir images from 28 March, the acquisition during a rain event (see the top graph), are of high

quality. The delineations for this date are likely to be overestimated; see the next section. Part

of the low backscatter area that is classified as small reservoir is from the bare soil with water

pools surrounding the small reservoir. The presented JM distances are, therefore, also likely to

overestimate the actual image quality. The rain event has a clear impact on the mean backscatter

intensities. In both the ‘HH’ and ‘HV’ polarizations, the backscatter intensities are elevated, while

the variation is similar. Acquisitions during a rainfall event can easily be detected based on its open

water backscatter intensities alone. A substantial number of reservoir images on 21 April have a low

quality, although no Bragg scatter is found in this date. Here, the contrast is low, due to reduced

vegetation on the land surrounding the small reservoir at the end of the dry season. Visual inspection

of the Pauli images from the time series in comparison to images from November indicated a strong

decrease in vegetated area inside the small reservoir. Vegetation in the small reservoirs is therefore

expected to have a smaller influence on the classification accuracy compared to the start of the

dry season.

4.4. Time Series Analysis

To demonstrate the Bayesian approach, two temporal priors were introduced. The priors update

the classification at the current time step based on temporal information from the previous and

subsequent classifications. Because of the rain event on 19 March (Figure 7), the temporal prior

probabilities for prior τ t+1 change as well as from the 14 March acquisition; see Table 4.

Figure 8 shows the delineations based on the gBC with (blue and green lines) and without

temporal priors (red line) for small reservoirs SR120 and SR154. From the delineations of both

reservoirs, it can be seen that the classifications with and without temporal priors are similar for high

quality images. Temporal priors improve the classification when the image has a low quality. A

relative difference in the classified area between the delineations with and without temporal priors of

more than 5% is found for 42 (55%) of the low quality reservoir images and only for 34 (22%) of the

high quality reservoir images.
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Figure 7. Rainfall time series (top), the quality of an acquisition based on the Jeffries

Matusita (JM) distance (middle) and the mean backscatter intensity of the minimum

delineated small reservoir area (bottom), where the boxplots show the median, first and

second quartile boundaries and the red crosses are outliers; the error bars show the mean

and one standard deviation boundaries.
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Figure 8. Time series of small reservoir delineation based on the ‘HH, HV’ polarization

combination and the basic gBC (red line), the gBC updated with temporal prior τ t−1 (blue

line) and the gBC updated with both priors τ t−1 and τ t+1 (green line) overlaid on HH

backscatter intensity images; the bottom graphs show the areal variation in time for the

same reservoirs, where the crosses show the filtered time series without the rain-affected

March 28 acquisition.
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Depending on the location within the small reservoir and the change of the polarimetric signature,

some areas with Bragg scatter are classified as small reservoir, even without the temporal priors. This

is because of the multi-polarized input data; see, e.g., SR154 on 25 January. The Bragg scatter at 14

March is not captured without the temporal priors in both reservoirs. The graphs in Figure 8 show that

most of the water patches with Bragg scatter are delineated based on the classification at the previous

time step (prior τ t−1). Additional updating based on the subsequent classification (prior τ t+1) only

improves the classification in some cases. An extreme case of Bragg scatter is found in the 7 April

image for SR120, where the full reservoir is affected and the contrast with the surrounding land

significantly deteriorates. Here, the classification is mostly governed by the temporal priors, as can be

seen from the large difference in the delineations with and without temporal priors. The classification

at the previous time step is affected by rainfall; see the next paragraph. In the case that the delineation

is updated with the classification from this time step, the small reservoir area is still overestimated.

When updated with the classification from the subsequent time step, the overestimation is further

limited. The discrepancy between the normal and the filtered time series (the 28 March acquisition is

filtered out) of small reservoir areas for 7 April shows that the temporal priors are less effective when

two low quality images follow each other (Figure 8).

The classified small reservoir areas from images acquired during a rain event are likely to be

overestimated. The 28 March acquisition shows increased average backscatter intensities from the

full images, but low backscatter intensities from land area within the maximum small reservoir

boundary. This is probably because of the formation of water pools on the bare ground surrounding

the small reservoirs. The delineation for both reservoirs on this date is not able to separate between

the elevated backscatter intensities from the roughened water surface and the decreased backscatter

intensities from the bare ground with water pools surrounding the small reservoir. This results in

an overestimated small reservoir area. This hypothesis is strengthened by the total rainfall amount

from these dates, which amounts to 18 mm (10 mm on 18 March and 8 mm on 19 March). Based

on the regional area-volume equations [4] and the classified small reservoir areas, this total rainfall

causes an increase of the water level of 94 mm in SR154 and 76 mm in SR120. This increase in the

water level is unlikely, given that the first rains after a long dry spell in the region do not create much

runoff [31]. The most accurate estimation of the small reservoir area for this date is found through

interpolating between the areas from subsequent and previous time steps in a time series, where 28

March is filtered out (Figure 8).

The results for the time series analysis of the gBC are summarized in Figure 9. The cumulative

time series, as presented in the top graph in Figure 9, shows a strong decreasing trend of the total

small reservoir area in the study area, which is expected during the dry season. The cumulative area

on 28 March is a clear outlier, because of rainfall during the acquisition; see the previous paragraph.

The filtered time series (the 28 March acquisition is filtered out) is in agreement with the expected

trend. The largest influence of the temporal priors is, as expected, found for acquisitions with Bragg

scatter (25 January, 14 March and 7 April ) and the acquisition during a rain event (28 March).

The bottom graph shows the effect of the chosen polarization combination on the delineated small

reservoir areas. For acquisitions where most reservoir images are of good quality, the differences
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are minimal. The single polarization ‘HH’ tends to underestimate the small reservoir areas for all

images with Bragg scatter. Multi-polarized combinations improve the delineation in some cases

of Bragg scatter, e.g., the 25 January acquisition. The dual polarization combinations perform

similar to the full polarized combination and are thus sufficient for small reservoir delineation. The

combination with the backscatter intensity ratio in general results in the largest classified area for

small reservoirs. During the 14 March, 28 March and 7 April acquisitions, which have the most low

quality reservoir images, the temporal priors are needed to improve the delineations regardless of the

polarization combination.

Figure 9. Time series of the cumulative classified area for 26 small reservoirs, based

on the growing Bayesian classifier (gBC) with and without temporal priors (top) and the

gBC without temporal priors for different polarization combinations (bottom).
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5. Conclusions

A Bayesian approach to monitoring small reservoirs was successfully applied. Despite temporal

and spatial variation in backscatter intensities from small reservoirs, the newly developed algorithm

is able to delineate open water throughout the dry season. The algorithm has a high accuracy, as

the confusion area is restricted to the land-water boundary. Due to auxiliary temporal information,
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images with a low land-water contrast are resolved, even in the case of wind-induced Bragg

scattering. One exception was the images acquired during a rain event, when water pools started

forming on the bare ground surrounding the small reservoirs in the dry season and the land-water

contrast deteriorates. In such cases, the use of time-series was able to mitigate the segmentation

error, but not to completely resolve the land-water ambiguity.

The land-water contrast decreases with increasing roughness of the water surface or decreasing

roughness of the surrounding land. The water surface roughness was found to increase due to

wind-induced Bragg scattering and during rain events. The roughness of the land surrounding

the small reservoir decreases towards the end of the dry season, when the water level in the small

reservoirs is low and bare ground surrounds it. Areas with vegetation inside the small reservoir at the

start of the dry season have a backscatter signature similar to land and were, therefore, not included

in the delineation, causing an underestimation of the actual small reservoir area.

Single co-polarized backscatter intensities are sufficient in the case of high quality images.

The dual polarization combinations ‘HH, HV’ and ‘HH, HV, HH/HV’ improve the land-water

contrast significantly in the case of Bragg scattering and are, therefore, the preferred combinations of

backscatter intensities for small reservoir monitoring. This is also relevant in the light of the European

Space Agency’s (ESA) Sentinel 1 satellite, which does not produce full polarimetric images. Further

research should address the exploitation of the coherent polarimetric information.

The overall conclusion of the paper is that, due to a Bayesian approach, the dynamics of small

reservoirs can be monitored from SAR data with a high level of automation and without the restriction

of cloud-free days. The suggested approach is to create a base map of small reservoirs first, after

which small reservoir dynamics can be monitored with SAR data using a Bayesian time series

approach. The base map is best created at the onset of the dry season, when the reservoirs are at

full capacity and the reservoir masks can be determined.
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Abstract: In this paper we explore the performances and the opportunities provided by the European 
satellite Sentinel-1 for water resource management applications in low-income countries. The 
analysis is supported by a synthetic aperture radar (SAR) simulator, which allowed the quantification 
of the expected characteristics of Sentinel-1 products in three applications: interferometric digital 
elevation models (DEMs) generation, land cover mapping and estimation of water volumes retained 
by small reservoirs. The obtained results quantitatively show that Sentinel-1 data characteristics are 
fully suitable for most of the application already explored in the recent SAR literature. 
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Papa, M.N.; Riccio, D.; Ruello, G. Sentinel-1 for Monitoring Reservoirs: A Performance Analysis. 
Remote Sens. 2014, 6, 10676-10693. 

1. Introduction 

The United Nations estimated that, by 2025, 1.8 billion people will live in regions characterized 
by water scarcity and two-thirds of the world’s population will be faced with a lack of water [1]. 
According to recent studies about the growth of global population (up to 8.3 billion in 2030 [2]), in 
ten years, water scarcity could affect almost 5.5 billion people. This scenario is also exacerbated by 
deserti cation (principally caused by unsustainable land management practices) which increases the 
pressure on water resources worldwide [3]. In fact, deserti cation, land degradation and drought 
globally affect 1.5 billion people, 24% of which are in Sub-Saharan Africa [4].  

Today, about 66% of Africa is arid or semi-arid and more than one-third of the Sub-Saharan 
population lives in a water-scarce environment with less than 1000 m3 available per capita [5]. In 
these areas, rural population mainly relies on small reservoirs for water harvesting in the rainy  
season [6]. As an example, in Burkina Faso, it is estimated that 1700 reservoirs are actually employed 
for agricultural activities, livestock watering and human consumption [7]. They are used to cultivate 
in counter-season, incrementing the food production and, therefore, the resilience to famine. 

Despite their crucial importance, many small reservoirs are neither monitored nor surveyed, due 
to high costs required by the setup and management of a sensor network. Hence, a complete and  
up-to-date catalog of location and maximum capacity of the reservoirs is not available, even because 
they are often built by an initiative of farmers’ associations, without general planning.  

In this context, remote sensing could be a powerful instrument, allowing a strong reduction of 
costs and time necessary to obtain relevant information for an effective management of water 
resources. Thus far, remote-sensing projects have mainly embraced the use of optical data (even 
thanks to the availability of free LANDSAT imagery), accepting the risk of acquisitions affected by 
cloud cover, a frequent event in the rainy season.  
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The use of Synthetic Aperture Radar (SAR) data was rather limited in past applications because 
of the high costs of data and the complexity of their interpretation by non-expert users. Moreover, 
the recent SAR literature about water resources monitoring in semi-arid regions is mainly related to 
sensors (ENVISAT, ERS and more) with low resolution (almost 20 m) imaging capability [8–10]. 

The most relevant project from the last few years in terms of water resources monitoring is the 
TIGER initiative, promoted by the European Space Agency (ESA) [11], which aims at assisting 
African countries to collect, analyze and disseminate water-related geo-information through the 
exploitation of remotely sensed data. Under the aegis of TIGER, several activities and projects 
regarding water-related issues have been supported. TIGER thus represented a framework within 
which European institutions and local African partners shared experiences and expertise stimulating 
the dissemination and the enforcement of respective knowledge. This led to the achievement of 
remarkable results as, for example, in the elds of trans-boundary groundwater management [12], 
land cover mapping [13], water bodies detection [14] and small reservoirs bathymetry [8].  

Valuable results have been obtained relating basins’ surface areas with retained water volume for 
northeastern Ghana [9]. These relations are extremely useful since they allow for the extraction of 
the available water volume through the estimation of a reservoir’s surface. This activity can be 
successfully carried out with remotely sensed data, thereby avoiding expensive bathymetric surveys.  

These expressions can be extended to other morphologically similar areas, where bathymetric 
surveys and/or a suitable DEM are not available. In particular, the almost uniform morphology of the 
Sahelian region gives the opportunity to use few calibration gauges. This possibility was also 
supported by the results of the comparison between area–volume relationships extracted from two 
datasets belonging to different areas of the Sahelian region [15].  

The introduction of the new generation of high-resolution sensors (such as COSMO-SkyMed, 
TerraSAR-X and Sentinel-1) allows for an effective monitoring of small reservoirs. In fact, as discussed 
in [15], COSMO-SkyMed imagery has been successfully employed for the study of basins with 
extension of few thousand square meters. The data on water retention at reservoirs can be used also for 
the implementation and calibration of hydrological models, as suggested in [16]. One of the main limits 
of COSMO-SkyMed imagery is the significant cost required for acquiring a complete dataset. 

The recent launch of Sentinel-1, the new ESA SAR sensor, solves the problems related to the cost 
of images, since ESA proposes a free data distribution policy. The interpretation of the SAR images 
is still a limit for the diffusion of this technology, because the image characteristics depend on the 
geometrical and electromagnetic properties of the observed surfaces. The comprehension of the 
geometric distortions introduced by the side-looking acquisition mode [17] and of the non-linear 
electromagnetic scattering phenomena that contribute to the SAR signal formation requires the 
quantitative knowledge of the interactions between the transmitted electromagnetic eld and the 
physical surfaces of the imaged scene. Therefore, several works in the past literature expressed the 
necessity of remote sensing processing chains devoted to produce results that could be easily 
interpreted by the potential end-users [18–20].  

In this paper, we present an analysis of the potentiality of Sentinel-1 in water resource monitoring 
activities. The analysis is supported by a SAR raw signal simulator and is focused on applications 
concerning water-related problems in semi-arid regions. 
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The work is organized as follows. In Section 2, we recall the main characteristics and results of 
the Water Resources Management in Semi-Arid Regions (WARM-SAR) project, which produced 
significant results for water resource management from high-resolution SAR data. Sections 3–5 deal 
with an analysis of the new opportunities offered by Sentinel-1: in Section 3, the main characteristics 
of the mission are recalled; Section 4 is devoted to introducing the SAR simulator used for the 
quantitative analysis of the Sentinel-1 performances; and, in Section 5, we present the results 
obtained by processing the simulated Sentinel-1 images. We provide specific results aimed at the 
production of DEM and related products, land cover maps and monitoring of water volumes. 
Implications of the use of this new sensor in the hydrological modeling of the study area are discussed 
throughout the examples. Conclusions are drawn at the end of the work. 

2. Water Resources Monitoring in Semi-Arid Regions: The WARM-SAR Project 

In this section, we recall the results of the WARM-SAR project, which is devoted to exploring the 
possible uses of SAR images for water resource monitoring.  

WARM-SAR exploited a set of 16 stripmap (3 m resolution) and 7 spotlight (1 m resolution) 
images with coverage of almost one year and a half, provided at no cost by the Italian Space Agency 
(ASI) under the aegis of the 2007 COSMO-SkyMed Announcement of Opportunities [21]. The SAR 
images cover a rectangular area of almost 1600 km² of the Yatenga district in the north of Burkina 
Faso, a small West African country where nearly 80% of the 14 million inhabitants live in rural areas 
and the main economic activity consists of subsistence farming and ranching. More than two million 
people are food insecure and about 34% of the population is subject to chronic malnutrition [22]. The 
region is characterized by a semi-arid climate, with a rainy season lasting three months.  

In the frame of the WARM-SAR project, we developed specific applications for low-income countries 
characterized by a semi-arid climate. In order to estimate the performance expected by the use of Sentinel-
1 data in a similar context, in this section we recall the basic principles of the following applications: 

1. Digital Elevation Models (DEMs) generation and related products; 
2. Land cover mapping; 
3. Monitoring of water volumes retained at reservoirs. 

2.1. Digital Elevation Models (DEM) Estimation and Related Products 

In [23], a reliable DEM was extracted by means of an interferometric processing of two images 
acquired at the end of the dry season, when the interferometric coherence is expected to be 
sufficiently high. The resolution of the DEM (9 m, obtained by the 3-multilook of the 3 m input SAR 
data) is significantly higher with respect to those previously available: SRTM (resolution 90 m) and 
ASTER (resolution 30 m). The availability of such a high-resolution DEM allows the estimation of 
the bathymetry of the small reservoirs that dry up completely at the end of the arid season [15] and 
the derivation of an analytical relation between reservoirs’ surface area and retained volume.  

The estimate of the reservoirs bathymetry from remotely sensed imagery provides valuable 
information about reservoir capacity. In fact, in Sahel, where sedimentation of the reservoirs due to 
strong soil erosion is extremely fast [24] and quickly changes the topography, there is a lack of 
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updated topographic information. The average sedimentation rates for six reservoirs of the study area 
were estimated, concluding that, in about 20–30 years, most of the studied reservoirs lost more than 
70% of their original capacity [25].  

2.2. Land Cover Map Production 

The availability of repeated acquisitions offered by new-generation sensors opens new 
perspectives for remote-sensing applications in semi-arid environments through the definition of new 
products which fully exploit the particular Sahelian climate [23]. In fact, as discussed in [19], the 
occurrence of a condition of aridity of the scene at the peak of the dry season makes it possible to 
establish a reference scenario for the other available images. The procedure for building the  
Level-1  products is presented in [19] and an example relevant to a small reservoir of the Yatenga 
district is depicted in Figure 1. The reference image, loaded on the blue band, was acquired at the 
end of April, i.e., at the peak of the dry season. The test images and the interferometric coherence are 
assigned to the green and red band, respectively.  

This combination of bands makes easy the users’ pre-attentive processing, i.e., the unconscious 
accumulation of information from the environment [26], since it allows for an association between 
relevant physical features of the scene and the colors restituted by the RGB map, which is consistent 
with human expectation. With reference to Figure 1, this happens, as an example, for seasonal water, 
and for seasonal vegetation, which are displayed in blue and green, respectively.  

As for the seasonal water, the blue color results from the prevalence of the backscattering from 
rough soil emerging in the dry season image (blue band) when there is no water in the intake, with 
respect to the backscattering from flat water surface occurring in wet season images (green band).  

As for the seasonal vegetation, the green color results from the prevalence of the backscattering 
from the vegetation emerging in the wet season images (green band) with respect to the 
backscattering from rough surfaces occurring in the dry season image (blue band), in absence of 
vegetation [27].  

In both the cases, the coherence (red band) is almost null. 
When the electromagnetic response of the reference image and of the test image is comparable, 

the map exhibits a cyan tonality. Where both the reference and test image are covered by surface 
water, due to the weak electromagnetic response in these two bands, the composition restitutes the 
black color (see the dark area in the immediate proximity of the dam in Figure 1).  

The main characteristics of the Level-1  products are the congruence with human vision, which allows 
for an immediate understanding of the more relevant natural cycles of a semi-arid environment (i.e., those 
of water and of vegetation), and the class detachability. The latter, in particular, makes these products 
very attractive for supervised classi cation procedures, even using extremely simple algorithms.  

The aforementioned characteristics of Level-1  imagery provide a tool for a quick estimation of 
the reservoirs’ surface areas for several basins, from which it is possible to retrieve the retained water 
volume, as is explained in Section 5. Thus, these products can be managed by a large variety of 
scientists and researchers, even non-experts in SAR issues, and could, therefore, potentially increase 
the use of such data, thereby bringing bene ts to water-related research activities. 
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Figure 1. Level-1  product detail of a small basin near to the Aoérama settlement (test 
image 31 August 2010).  

 

2.3. Monitoring of Water Volumes Retained at Reservoirs 

The areas covered by water were extracted by the intensity SAR images despeckled using an optimal 
weighting multitemporal De Grandi filter [28]. This technique allows amplifying the water—land 
contrast and producing more accurate information on the extension of water surfaces. A further 
speckle reduction was obtained by a spatial multilooking, which reduced the images’ resolution to 9 
m, in accordance with DEM resolution. 

The coupled measures of water surface and DEM led to the estimation of water volumes retained 
by the dam. The retrieved data were used to validate a simple hydrological model [15]. The time 
evolution of the water storage was computed by the implementation of a balance between the 
incoming and outgoing water flows.  

In order to validate the model, the computed storages are compared with those extracted from 
SAR data. In spite of the assumptions made and of the uncertainties linked to the estimation of some 
of the input data, the model was able to catch the overall behavior of the system and, therefore, can 
be used for the simulation of different scenarios of water abstraction from the reservoirs and, therefore, 
to optimize the resource management. Another important application of the proposed model is the 
estimation of the impact of small reservoirs on the downstream flow, which a crucial information in 
case of water conflicts [8]. 

3. Sentinel-1: The Mission 

Despite the great potentiality offered by WARM-SAR and similar projects, the scaling and the 
capillary diffusion of the derived products is still constrained by technical and economical limits, 
especially in low-income countries, where most of the potential beneficiaries of the proposed 
products can not sustain the cost of commercial data.  

The aim of the Sentinel mission is to support the Copernicus program, offering a significant 
scientific opportunity thanks to: (i) a broad variety of sensing methods, (ii) the compatibility with 
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past ESA mission (in the case of SAR this holds for ERS and ENVISAT) [29], and (iii) the 
distribution policy, which will guarantee free, full and open access to data. Therefore, the capacity 
of acquiring, interpreting and processing Sentinels’ data will be crucial for the success of projects 
involving geographical information. 

Sentinel-1 is a two-SAR satellite constellation designed to guarantee global coverage with a revisit 
time of 6 days. The first satellite (Santinel-1A) was launched on 3 April 2014. A 12-meter long radar 
working in C-band was successfully deployed and is starting to acquire images all over the world. 
Sentinel-1A is placed in a near-polar, sun-synchronous orbit with a 12-day repeat cycle and 175 
orbits per cycle. Both the satellites of the Sentinel-1 constellation share the same orbit plane with a 
180° orbital phasing difference.  

Sentinel-1 is designed to work with four different possible operative modes: (i) stripmap, (ii) 
wave, (iii) interferometric wide swath and (iv) extra wide swath. It supports dual polarization 
acquisition (HH + HV or VV + VH) for all the modes, with the exception of the wave mode (see 
Table 1). The medium resolution of the stripmap is very close to the resolution of the images used 
for the development of the products introduced in Section 2. In the following sections, also with the 
use of a SAR raw signal simulation, we present a study of the expected performances of Sentinel-1 
in the design and development of the products presented in the frame of the WARM-SAR project. 

Table 1. Sentinel-1 operative modes. 

Mode Swath (km) Resolution (m × m) Polarization 
Stripmap 80 5 × 5 Dual 

Wave 20 5 × 5 Dual 
Interferometric WS 250 5 × 20 Dual 

Extra WS 400 20 × 40 Single 

4. Sentinel-1: SAR simulation  

In this section, we introduce the basic concepts of SAR raw signal simulation, which is here used 
to simulate both Sentinel-1 and COSMO-SkyMed data and to discuss the expected performances of 
Sentinel-1 in the development of the WARM-SAR applications described in Section 2. 

Let x and r be the independent space variables, standing respectively for azimuth and range. By 
using primed coordinates for the independent variables of the SAR raw signal, s(x’,r’), this can be 
expressed as [30]: 

, (1)

where  is the reflectivity pattern of the scene, and  the unit impulse 
response of the SAR system [30]. Therefore, in order to obtain  we need to evaluate both the 
reflectivity function and the impulse response of the system. 
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The evaluation of the reflectivity function requires the use of adequate electromagnetic scattering 
models, able to provide the solution of interest as a function of the considered sensor and surface 
parameters. Hence, we need a description of the macroscopic aspects of the surface at the scale of 
the sensor resolution: this is accomplished by providing as input to the simulator a DEM. The 
behavior of the DEM is then approximated using a two-scale model [30], i.e., using plane facets, 
over which a microscopic random roughness is superimposed. Then, the mean square value of the 
field backscattered from each facet can be evaluated providing an adequate stochastic description of 
the microscopic roughness. The roughness can be described using parameters resulting from the 
introduction of different models for the shape of the surface [31]: in the present paper, the roughness 
is described through a fractal fractional Brownian motion (fBm) process [31], i.e., using only two 
independent parameters, the Hurst coefficient H and the topothesy T [m]. Finally, to complete the 
description of the surface, the relative dielectric constant ε and the conductivity σ [S/m] of the 
observed surface must be provided as input to the simulator. The small perturbation model, with the 
appropriate fractal power law spectrum, can be then used for the evaluation of the reflectivity 
function of the surface [31].  

Note that the reflectivity function is evaluated in a ground range–azimuth reference system and is 
necessary to project it in the sensor-centered slant range–azimuth reference system. After this 
transformation, the obtained reflectivity function is filtered according to the impulse response of the 
SAR system, providing as output the raw signal, as shown in Equation (1). In order to compute the 
impulse response, the radar and orbital parameters of the sensor are needed: satellite height h and 
velocity v, the sensor look angle θ and frequency f0, the chirp duration τ and bandwidth B, the 
sampling rate fs, and the pulse repetition frequency PRF. Finally, after standard focusing, the obtained 
raw signal provides the final simulated complex SAR image. The block diagram of the algorithm 
employed to evaluate the raw signal is depicted in Figure 2. 

Another important aspect of the simulation procedure is the appropriate inclusion of the speckle 
effect [32]. Its presence is accounted for thanks to the aforementioned two-scale model. In fact, thanks 
to this approach, the spatial scales both smaller and larger than the resolution can be treated 
differently. In particular, the signal macroscopic behavior is described evaluating the mean square 
value of the field scattered from the plane facets locally approximating the considered surface, 
assuming knowledge of the microscopic roughness parameters (H and T) and the electromagnetic 
parameters (ε and σ) of the surface [31]. Conversely, the microscopic behavior, which determines the 
presence of speckle, is introduced via a statistical model: in this paper, we assume a fully developed 
speckle [32,33], and the amplitude–signal value obtained for each facet is multiplied by one specific 
realization of a Rayleigh random variable [30]. 

In Table 2, the parameters used for the simulation of Sentinel-1 and COSMO-SkyMed images are 
reported. With these parameters, we obtain a pixel spacing in azimuth–ground range on the final 
images of 4.66 m × 5 m for Sentinel-1 and 2.08 m × 2.33 m for COSMO-SkyMed. 
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Figure 2. Block diagram of the SAR raw signal simulation. Radar (RD) and orbital (OD) 
data, along with the geometric (z) and electromagnetic (ε and σ) parameters of the surface 
are the required inputs.  

 

Table 2. Simulation parameters. 

Simulation Parameter Sentinel-1 COSMO-SkyMed 
h [km] 693 619.6 
v [m/s] 7 7.5 
θ [°] 30 33.6 

f0 [GHz] 5.405 9.3 
τ [μs] 35 35 

B [MHz] 60 65.64 
fs [MHz] 60 116.25 
PRF [Hz] 1500 3612.7 

5. Sentinel-1:  Opportunities 

The simulator presented in the previous section allows for a quantitative estimation of the 
performances of Sentinel-1 mission in water resource management applications. In the following, 
some applications will be discussed and the quality of the expected products compared with those 
obtained in the framework of the WARM-SAR project (see Section 2). 

5.1. DEM Estimation and Related Products 

The use of interferometric techniques for the evaluation of a DEM is in principle replicable  
with Sentinel-1 data. The difference in spatial resolution in stripmap mode (3 m for  
COSMO-SkyMed, 5 m for Sentinel-1) will cause a corresponding reduction of the resolution of the 
DEM from 9 m to 15 m. Such a limitation is not significant for many of the applications proposed in 
the WARM-SAR project. 

As discussed in Section 2, both optical and SAR data can provide observations of the reservoirs’ 
retention area, while, in the absence of bathymetric information, the retained volumes remain unknown. 
To overcome this limitation, it is possible to use relationships between reservoirs’ storage volumes and 
areas, which in case of homogeneous morphology can be valid for an entire region. For instance,  



411 
 

 

an area–volume relation was developed in literature [34] performing an extensive bathymetric survey 
in the Upper East Region of Ghana: 

Volume = 0.00857 area1.4367 (2)

Starting from SAR-derived data, a regression analysis was applied in order to obtain an area–volume 
relationship for the Yatenga district [15]: 

Volume = 0.1012 area1.167 (3)

In order to assess the potentiality of Sentinel-1 data for this kind of application, the DEM acquired 
in the WARM-SAR project was resampled at the Sentinel-1 scale and a new dataset of area–volume 
for the Laaba reservoir was built. This dataset was compared to the one obtained for the same reservoir 
using the DEM extracted from COSMO-SkyMed satellite imagery in the WARM-SAR  
project framework. 

The analysis of the DEMs was performed computing the areas of water surfaces at fixed heights, 
with a step of 0.3 m. The water volumes stored in the reservoir for each step were calculated as a 
sum of those contained in each pixel of the water surface, which is assimilated to a water column, 
whose height hwc is given by: 

 (4)

where hc is the elevation of the equipotential surface traced by the basin, and h is the DEM height 
corresponding to the considered pixel. The water volume V contained in the whole reservoir is then 
estimated as the summation of all the volume contributions, given as the product of the pixel area Si 
and the water column height hwc: 

 (5)

In Figure 3, the results obtained through the DEM analysis and the application of the area–volume 
relationship proposed in [15] for the Yatenga region are plotted. The overall trend is similar for both 
the analyzed DEMs. An apparent anomaly occurs for low water surface areas in the Sentinel-like 
DEM (for example, three blue dots refer to the same area but to different volumes). This is because 
the lowest area values correspond to few pixels, which in the Sentinel-1 DEM have a surface of  
225 m2. The higher resolution of COSMO-SkyMed-derived DEM made possible to compute more 
reliable values of the retained volume for such areas. This effect depends both on the morphology of 
the region and on the interpolation that produced differences in height between adjacent pixels greater 
than 0.3 m.  

The above described effect allows the estimation of the range of areas that can be safely retrieved 
by Sentinel imagery. In principle, reservoirs covered by some thousands of square meters can be 
effectively monitored. We can also remark that the area–volume relationship proposed in [15] 
underestimates the reservoir volume when the water surface is in the range between 1000 and  
20,000 km2. 
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Figure 3. Laaba’s storage volumes as a function of the corresponding surface areas. 

 

5.2. Land Cover Map Production 

In this paragraph, we use the simulator presented in Section 4 to quantitatively evaluate how the 
land cover products developed in the frame of WARM-SAR can be replicated with Sentinel-1 data.  

Table 3. Parameters used in the simulations. 

Simulation Parameter Terrain Water 
ε  4 40 

σ [ S/m ] 0.001 1 
H 0.8 0.75 

s [m1-H] 0.1 0.01 

As an example, we simulate the temporal evolution of the Laaba basin’s water levels, by using an 
approach similar to that implemented in [34] for the simulation of flooded scenes. In particular, we 
modify the initial DEM (acquired when the basin is empty, see Section 2.2) reproducing the progressive 
filling of the basin with water-height steps of 0.5 m. We set the roughness (Hurst coefficient H and 
standard deviation at unitary distance s) and electromagnetic parameters (dielectric permittivity ε and 
conductivity σ) of the terrain and water-filled area to typical values (see Table 3). In Figure 4, we show 
the DEMs with different water levels that were given as input to the simulator. It is worthwhile to note 
that with respect to the DEM presented in [23], a local adaptive filter (see [35]) has been applied in 
order to reduce the noise due to the presence of vegetation on the boundary of the water surface. 
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Figure 4. Laaba basin, 3D representation of the DEM used for SAR simulation. Water 
contour height: 341 m (a), 340.5 m (b), 340 m (c), 339.5 m (d), 339 m (e) and 338.5 m 
(f). A vertical stretching factor has been applied for visualization purposes. 

 

 

 

The simulated data have been processed in accordance with the approach presented in [19], where 
Level-1  products were defined. In Figure 5, we show the simulated Level-1  products for a scenario 
relevant to the Laaba reservoir, filled with different water levels. A simple classi cation rule, as 
explained in Section 2.4, allows the extraction of the water surface from the different acquisitions. It 
is worthwhile noting that, except for the area covered by water, the Level-1  products exhibit a 
substantial balance between the test and reference intensity channels, providing an almost 
homogeneous cyan background. This is due to the fact that the simulator does not take into account 
the presence of vegetation, and the dielectric constant of terrains outside the reservoir was fixed to a 
constant value in all the simulated images. 

The contrast between water and terrain backscattering is very similar to that of the actual 
COSMO-SkyMed data. This result is supported by the analysis of the expected backscattering 
at the X- and C-bands.  

In Figure 6, we provide the backscattering coefficient of a typical rough soil, characterized by 
Hurst coefficient H = 0.8 and standard deviation at unitary distance s = 0.1 m1-H, as a function of the 
incidence angles typical of remote-sensing applications (from 15 to 45 degrees). The curves have 
been evaluated with the small perturbation method (SPM) [31] for the HH polarization. The 
backscattering behavior is similar at the X- and C-bands. Similar results can be obtained at  
VV polarization.  
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Figure 5. Laaba basin, simulated Sentinel-1 Level 1  products. Water contour height:  
(a) 341 m, (b) 340.5 m, (c) 340 m, (d) 339.5 m, (e) 339 m and (f) 338.5 m. The spatial 
resolution is 5 × 5 m.  

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 6. Backscattering coefficient from a rough terrain as a function of the incidence 
angle, evaluated with the SPM at X- (blue line) and C- (red line) bands. 

 

For water surface identification purposes, it is reasonable to analyze how the contrast between the 
water and the terrain backscattering is influenced by the frequency. In Figure 7, we plot the ratio 
between the backscattering coefficient of a rough terrain and of a water surface (see the parameters 
defined in Table 3) as a function of the incidence angle. The result shown in Figure 7 shows that, 
despite a small reduction, the contrast is still sufficient (almost 17 dB in the considered range of 
angles) to identify the area covered by water with the techniques presented in the frame of the 
WARM-SAR project. 

Figure 7. Ratio between the backscattering coefficient of a rough terrain and of surface 
water as a function of the incidence angle evaluated with the SPM at X- (blue line) and  
C- (red line) bands. 
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5.3. Monitoring of Water Volumes Retained at Reservoirs 

In order to evaluate the potentiality of Sentinel-1 in measuring water volumes in semi-arid regions, 
we compared a series of simulated COSMO-SkyMed images superimposed to a 9 m spatial resolution 
DEM and a series of simulated Sentinel-1 images superimposed to a 15 m spatial resolution DEM for 
different levels of the water contour height. The results of the comparison are shown in Figure 8 for the 
Laaba reservoir. Such a comparison provides an estimation of the effect of the loss in spatial  
resolution introduced by Sentinel-1 with respect to the COSMO-SkyMed products used in the  
WARM-SAR project.  

Figure 8. Laaba basin: Surface water as function of the contour height. 

 

Figure 9. Laaba basin: retained water volume as function of the contour height. 

 

As expected, the discrepancy between Sentinel-1 (blue curve) and COSMO-SkyMed (orange curve) 
arises especially when the basin tends to ll up. In fact, when the water level increases, its contour is 
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better delineated by the higher COSMO-SkyMed resolution. The error introduced by the loss in spatial 
resolution is in the order of 15%–20% and it is almost constant for water contour height  [339.5, 341].  

The estimated surface is then used for computing the water volume retained into the basin 
considering each pixel belonging to the water mask extracted from the simulated Level-1  products 
as a water column, as explained in Section 5.1. 

Results of this analysis are shown in Figure 9. The errors in the estimation of the surface areas do 
not affect signi cantly the retained volume calculation since they are mainly located at the boundary 
of the basin, where the contributions to the summation of (4) are small. 

6. Conclusions 

In this paper we explored the potentiality of the Sentinel-1 mission in providing data and value-
added information for water resource management applications. The study has been supported by the 
use of a SAR raw signal simulator, achieving an innovative framework for the analysis of  
Sentinel-1 performances. 

The results expected by the use of 5-meter resolution Sentinel-1 images in water-related projects 
were compared to those obtained by the use of 3-meter resolution COSMO-SkyMed imagery in the 
previously developed WARM-SAR project. The SAR raw signal simulator allowed the estimation 
of the expected differences of performances due to resolution and frequency. The quantification of 
the differences in the scattering mechanisms between the X- and C-bands was also presented.  

Three classes of applications were investigated: (i) the creation of an interferometric DEM and 
related products, (ii) the production of land cover maps, and (iii) the monitoring of water volumes 
retained at reservoirs.  

As for the interferometric applications, the ratio between Cosmo-SkyMed and Sentinel-1 
resolution is 0.6. Such a factor quantifies also the loss of resolution on the production of the DEM. 
In addition, we achieved a quantitative estimation of the degradation of performances that would be 
obtained by replicating most of the products obtained in WARM-SAR with Sentinel-1 data. In 
particular, we experimented that the Sentinel-1 and COSMO SkyMed derived DEM provide 
comparable results in the extraction of the relation between reservoir surface area and retained water 
volume for all the reservoirs whose extension is higher than one thousand square meters. 

As for the production of land cover maps, the SAR raw signal simulator led us to simulate, present 
and interpret Sentinel-1 Level-1  products. Appropriate electromagnetic models were used to 
demonstrate that the radiometric contrast between water and rough surfaces at the C band is about 2 
dB lower than at X band for incidence angles in the range between 15° and 45°. Such a result 
demonstrates that land cover maps obtained by Sentinel-1 will guarantee class separation comparable 
to that obtained by Cosmo-SkyMed images. 

As for the monitoring of water volumes retained by reservoirs, we experimented that the loss in 
spatial resolution introduced by Sentinel-1 imagery produces a discrepancy in the order of 15%–20% 
in the estimation of reservoir surface area with respect to COSMO-SkyMed images. However, this 
error is reduced to about 12% in the estimation of retained volumes since it is limited at the  
reservoirs’ borders. 
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In synthesis, this work presented a new framework for simulating Sentinel-1 data and related 
products. It provides the opportunity to predict and control quality parameters of the Sentinel-1 SAR 
data and products, whose high informative content, conjugated with the open access policy, 
represents an extraordinary opportunity for future projects, mainly in low-income countries. 
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Evaluating MERIS-Based Aquatic Vegetation Mapping in 
Lake Victoria 

Elijah K. Cheruiyot, Collins Mito, Massimo Menenti, Ben Gorte, Roderik Koenders and  
Nadia Akdim 

Abstract: Delineation of aquatic plants and estimation of its surface extent are crucial to the 
efficient control of its proliferation, and this information can be derived accurately with fine 
resolution remote sensing products. However, small swath and low observation frequency 
associated with them may be prohibitive for application to large water bodies with rapid 
proliferation and dynamic floating aquatic plants. The information can be derived from products 
with large swath and high observation frequency, but with coarse resolution; and the quality of so 
derived information must be eventually assessed using finer resolution data. In this study, we 
evaluate two methods: Normalized Difference Vegetation Index (NDVI) slicing and maximum 
likelihood in terms of delineation; and two methods: Gutman and Ignatov’s NDVI-based fractional 
cover retrieval and linear spectral unmixing in terms of area estimation of aquatic plants from 300 
m Medium Resolution Imaging Spectrometer (MERIS) data, using as reference results obtained 
with 30 m Landsat-7 ETM+. Our results show for delineation, that maximum likelihood with an 
average classification accuracy of 80% is better than NDVI slicing at 75%, both methods showing 
larger errors over sparse vegetation. In area estimation, we found that Gutman and Ignatov’s 
method and spectral unmixing produce almost the same root mean square (RMS) error of about 
0.10, but the former shows larger errors of about 0.15 over sparse vegetation while the latter 
remains invariant. Where an endmember spectral library is available, we recommend the spectral 
unmixing approach to estimate extent of vegetation with coarse resolution data, as its performance 
is relatively invariant to the fragmentation of aquatic vegetation cover. 

Reprinted from Remote Sens. Cite as: Cheruiyot, E.K.; Mito, C.; Menenti, M.; Gorte, B.; Koenders, R.; 
Akdim, N. Evaluating MERIS-Based Aquatic Vegetation Mapping in Lake Victoria. Remote Sens. 
2014, 6, 7762-7782. 

1. Introduction 

Aquatic weed infestation is one of the major environmental challenges globally. The weeds, 
which mostly comprise water hyacinth and hippo-grass, are associated with many adverse effects. 
Continuous observation and monitoring of their proliferation is essential for proper lake 
management and weed control [1]. Remote sensing information has increasingly become essential for 
water resource management. It is a powerful tool for studying large scale phenomena in aquatic 
vegetation communities, and is capable of delivering timely information unmatched by any other 
surveying technique [2]. High resolution data such as those acquired by IKONOS and Korea  
Multi-Purpose Satellite (KOMPSAT) satellites provide detailed information but are associated with 
low observation frequency and small swath, and their cost may be prohibitively expensive for large 
area assessments [3]. A common remote sensing practice is to mosaic spatially adjacent images that 
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are acquired within a short temporal range to produce extensive cover maps. Rapid proliferation 
and the dynamic nature of floating aquatic vegetation have the implication that mosaicking is not 
suitable for aquatic environments with freely floating vegetation. Coarse resolution products such 
as Medium Resolution Imaging Spectrometer (MERIS) and MODIS provide a wider view and 
higher data frequency at the expense of spatial details. Because of this inherent trade-off, it may be 
appropriate to use coarse resolution data for continuous frequent observation of aquatic vegetation, 
and occasionally use the high resolution data to assess the quality of derived information. 

Frequent and accurate monitoring of aquatic vegetation is not only essential in providing reliable 
and timely information to the lake management authorities for sustained water resource  
management [4], but also in improving the quality of related studies which rely on this information 
for their analyses. For example a study to evaluate the effect of nutrient influx on vegetation 
proliferation would require adequately accurate information on the extent and location of aquatic 
plants. Assessing the accuracy of remotely derived information allows users to ascertain their 
reliability, and it is a means through which the producers communicate product limitations to users, 
leading to appropriate use of the information [5]. According to [6], accuracy assessment of remote 
sensing map products has evolved in four developmental stages. It started with visual assessment of 
images to determine whether the classification results were good or not. It improved to the stage 
where an overall non-site-specific percentage accuracy was provided, and further to a site-specific 
accuracy assessment. Finally, a more detailed analysis of the site-specific accuracy assessments 
emerged, for example the use of error/confusion matrix and kappa coefficients. Error matrix has 
become one of the most commonly used method of classification accuracy assessment, with several 
applications in land use/land cover mapping, for example [7] and [8]. This method requires manual 
identification of reference sites/pixels from homogeneous surfaces, which are assumed to represent 
pure feature classes (endmembers) [9]. Error matrix also allows the use of “Pareto Boundary” 
analysis of the trade-off between commission and omission error, in order to determine the optimal 
classification performance that can be obtained for a specific low resolution data. 

Several algorithms have been developed for the remote retrieval of biophysical characteristics of 
vegetation. The authors of [1] used an unsupervised clustering technique with thresholds based on a 
“wetness index”, to identify water hyacinth and water hyacinth-free areas in Lake Victoria. The 
authors of [10] applied Minimum Distance—a simple parametric classification algorithm to 
identify floating vegetation areas, before applying a spectral linear mixture model—a sub-pixel 
analysis to discriminate different vegetation species according to the weed spectral behaviour. The 
most widely used method, however, is the mathematical combination of visible and near-infrared 
reflectance bands in the form of spectral vegetation indices [11]. Vegetation indices are widely used 
because of their computational simplicity. Many studies on Lake Victoria have used vegetation 
indices, for example, [12] used NDVI to investigate the dependency of hyacinth biomass production 
on nutrients levels. In [13], the authors used a time-series of NDVI to evaluate the link between the 
occurrence of El Nino events in East Africa and water hyacinth blooms in Winam Gulf section of 
Lake Victoria. The authors of [14] used NDVI and several of its derivatives to monitor Lake 
Victoria’s water level and drought conditions. More recently [15] used NDVI to map vegetation 
distribution in the lake, and to develop a floating vegetation index for quantifying its surface extent. 
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Vegetation cover estimates obtained with remote sensing methods can provide useful decision 
support information required for the control of aquatic plants proliferation. This information can 
only be useful if the practitioners have a way of ascertaining its accuracy. Little information is 
available on the accuracy of aquatic vegetation cover estimates derived at coarse resolution. The 
accuracy of a method in detection of terrestrial vegetation and aquatic vegetation may be different 
because of the difference in backgrounds. Water, which forms the background to aquatic 
vegetation, has a stronger absorption of electromagnetic radiation than soil. Further, the dynamic 
nature of the floating aquatic vegetation introduces a unique case to the evaluation of detection 
accuracy of aquatic vegetation. Floating vegetation is carried away by tides and wind, making it 
difficult to identify sampling sites where manual vegetation cover estimates can be made. Unlike in 
the case of terrestrial vegetation where the target is stationary, it is technically challenging to 
collect reference in situ measurements. A viable alternative is to use as reference results obtained 
with finer resolution remote sensing products. In addition, the reference image must have its 
acquisition time as close as possible, ideally in the order of minutes, to that of the classified image. 
Obtaining such pair of data is perhaps the biggest challenge in the assessment of floating aquatic 
vegetation classifications. 

Our objective is to evaluate the performance of algorithms commonly used to monitor aquatic 
plants in extensive water bodies, in terms of their accuracy in detecting aquatic plants from coarse 
resolution remote sensing data—in this case the 300 m resolution MERIS data. MERIS sensor 
ended data acquisition in March 2013, but its products are good test data for the anticipated Sentinel 2/3 
products. In terms of delineation, we evaluate two methods: NDVI slicing—with special focus on 
the empirical slicing proposed by [15], and maximum likelihood classifier. In terms of area 
estimation, we evaluate two methods: NDVI-based fractional cover retrieval model proposed  
by [16], and linear spectral unmixing (LSU)—which is a form of spectral mixture analysis. We also 
aim at assessing the suitability of using higher resolution data as reference in assessing the quality 
of aquatic vegetation cover information obtained with coarse resolution products. 

2. Study Area 

Our study area is the Winam Gulf section of Lake Victoria. Lake Victoria is a large fresh water 
body in East Africa. It stretches 412 km from north to south between 0°30 N and 3°12 S and 355 
km from west to east between 31°37 E and 34°53 E. The lake, which is the largest of all African 
lakes, is also the second largest freshwater body in the world by area, with an extensive surface area of 
68,800 km2. Figure 1 shows the geographic location of Lake Victoria. 

We focus on the Winam Gulf because this almost enclosed shallow section of the lake is more 
vulnerable to vegetation invasion perhaps due to high levels of eutrophication. Earlier work of [15] 
show that vegetation proliferation is preceded by about two months by high levels of water quality 
indicators such as total suspended matter (TSM) and phytoplankton measured as a Chlorophyll-a  
(Chl-a) index. The most prevalent of these invasive weeds include the non-native water hyacinth  
and hippo-grass. The weeds are associated with many adverse effects which include obstruction  
to fishing, navigation and irrigation, interference with the aquatic biodiversity [17,18], water 
quality deterioration and a general risk to public health [19]. The lake is an important economic 
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resource to the three riparian countries, Kenya, Tanzania and Uganda, through fishing and transport, as 
well as providing a livelihood for the local communities. 

Figure 1. Geographic location of Lake Victoria in East Africa (a) and Africa (b),  
(c) Zoomed-in Winam Gulf section of the lake. Source: Google Maps. 

 

3. Materials and Method 

3.1. Data 

We use two pairs of coarse and fine resolution images, acquired almost simultaneously, to 
evaluate the performance of four algorithms in retrieval of aquatic vegetation cover information. 
MERIS (Medium Resolution Imaging Spectrometer) image in its full resolution mode (MERIS FR) 
has a spatial resolution of 300 m. We use as reference the results obtained with Landsat-7 ETM+ 
imagery at 30 m spatial resolution. Due to the dynamic nature of floating aquatic vegetation, the 
key consideration in selecting data for use in assessing the classification accuracy of aquatic 
vegetation is the temporal proximity of the image pair. During a field survey, it was estimated to 
take about an hour for a floating vegetation mat to move across a length approximately equal to the 
size of a MERIS pixel (300 m). Allowing vegetation displacement to a maximum of 0.25 of the 
pixel, then the interval between the acquisitions of the image pair should not be longer than 15 min. 
For the period 2003–2012, the entire lifetime of MERIS sensor, there are just seven scenes of 
Winam Gulf whose acquisition time coincides with those of ETM+, with acquisition intervals of the 
image pairs ranging from two to fifteen minutes. We selected two of these image pairs for our 
analysis, and their specifications are summarised in Table 1. The choice of these image pairs is 
based primarily on the short acquisition interval, and secondarily on the amount and distribution of 
aquatic vegetation in the images. Central acquisition time for each image is indicated. Since the 
image pairs were acquired almost simultaneously, we assume similar conditions of cloud, haze and 
water surface roughness (due to wind conditions). One of the greatest confounding factors limiting 
the quantity and accuracy of remotely sensed data from water bodies is sun glint, the specular 
reflection of directly transmitted sunlight from the upper side of the air-water interface [20]. Sun 
glint is a function of the state of the water surface (surface roughness), sun position and satellite 
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viewing angle. Sun zeniths of 30°–60° degrees are optimal for minimizing sunglint [21]. Sun zenith 
angles are respectively 34.6° and 35.4° for MERIS and ETM+. The range of sensor viewing angles 
across the study area is indicated for each image. Since the radiance received by sensor is inversely 
proportional to the cosine of the sensor view angle, then sunglint effect on the images is negligible. 

Table 1. A summary of satellite data used in the study. 

Image 
Pair 

Sensor Acquisition Time 
Spatial 

Resolution 
Spectral Resolution 
(Visible and NIR) 

Sensor Viewing 
Angles 

Pair 1 
MERIS 15 December 2010 07:49 300 m 15 bands 7°–11° 
ETM+ 15 December 2010 07:48 30 m 5 bands 0°–5° 

Pair 2 
MERIS 27 July 2011 07:41 300 m 15 bands 6°–10° 
ETM+ 27 July 2011 07:48 30 m 5 bands 0°–5° 

3.2. Pre-Processing 

Before using the satellite data, we convert the sensor radiance values into reflectance values and 
perform atmospheric corrections as here described. Atmospheric corrections of MERIS data were 
performed using SMAC Processor 1.5.203 (a Simplified Method for Atmospheric Corrections of 
satellite measurements) [22], incorporated in the software package BEAM (Basic ERS and Envisat 
(A) ATSR and MERIS Toolbox). It is a semi-empirical approximation of the radiative transfer in 
the atmosphere which takes into account the attenuation due to atmospheric absorption and 
radiance of the scattered skylight. We used FLAASH (Fast Line-of-sight Atmospheric Analysis of 
Spectral Hypercubes), an atmospheric correction code based on the MODTRAN 4 (MODerate 
resolution atmospheric TRANsmission) radiative transfer model, to convert Landsat-7 ETM+ sensor 
radiance to surface reflectance. A certain degree of geolocation errors is inevitable when dealing 
with multiple data sets. We co-registered the image pairs using an image to image first order 
polynomial transformation and nearest neighbour resampling, with RMSE = 0.0745 and  
RMSE = 0.1218 for image pair 1 and 2 respectively. This represents a geolocation error of about 
22.35 m for image pair 1, and 36.54 m for image pair 2, which is about the pixel size of the 
reference image. This may have an impact on the margins of the sample areas, but minimal. 

3.3. Sampling 

Evaluation of methods was carried out with two hundred (300 m × 300 m) samples. Each 
MERIS sample pixel corresponds to a square area covered by 10 × 10 ETM+ (30 m × 30 m) pixels. 
Sample MERIS pixels were selected such that their corresponding location in the ETM+ image 
would fall right in the middle of the stripes occasioned by the scan line corrector (SLC) failure in 
Landsat-7, so as to avoid the no-data pixels. Under these restrictive circumstances, a limited 
number of samples were selected. The samples were selected in Winam Gulf to include both the high 
and low vegetation density areas, as well as areas along the vegetation-water edges. Figure 2a 
shows the selected sample pixels for image pair 1; Figure 2b is a close-up (300 m × 300 m) MERIS 
pixel, while Figure 2c shows the corresponding one hundred (30 m × 30 m) ETM+ pixels. 
Although we use a shoreline derived from high resolution data to isolate our study area, we avoided 
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samples too close to the shore, to avoid a possible confusion with terrestrial vegetation due to an 
imperfect shoreline. 

Figure 2. (a) Location of the 200 selected sample pixels for the image pair acquired on  
15 December 2010, (b) A close-up MERIS (300 m) pixel, (c) Corresponding 100 
Landsat-7 ETM+ (30 m) pixels. 

 

3.4. Experimental Design 

Our objective is to determine and monitor the lake area covered by aquatic vegetation: because  
of the size of Lake Victoria and the temporal variability of the extent of aquatic vegetation, satellite 
data should provide observations at daily intervals or shorter, with spatial resolution limited to 1 
km or worse. We aim at determining the total lake area covered by aquatic vegetation and at 
delineating it. 

In this study we regard MERIS as our primary source of observations and we want to assess  
the accuracy of both estimated total area and of the delineation of it. We used Landsat ETM+ data 
as a reference. 

In summary we have evaluated different ways to determine the two variables of interest using 
the methods listed below and described in the following sections: 

Delineation: slicing of NDVI, maximum likelihood classifier; 
Total area: retrieval of fractional abundance from NDVI and by linear spectral un-mixing; 

All four methods have been applied to MERIS data and evaluated against results obtained with 
ETM+. The list of image data has been given in Table 1, while the design of the evaluation 
experiment is given in Table 2. 
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Table 2. Design of the evaluation experiment: classification of MERIS and ETM+ data 
provides delineation of the area covered by aquatic vegetation; area integral of 
fractional abundance (fv) provides estimates of the total area covered by aquatic 
vegetation. The right column shows the comparison method applied in each case. 

MERIS ETM+ 
Comparison method 

Method Retrievals Method Retrievals 
-- -- Delineation -- -- 

Sliced NDVI 3 classes Sliced NDVI 3 classes Error matrix 
Maximum Likelihood 2 classes Maximum Likelihood 2 classes Error matrix 

-- -- Total area -- -- 
NDVI vf  NDVI vf  RMSE, Linear regression 

Spectral unmixing vf  Spectral unmixing vf  RMSE, Linear regression 

3.5. Empirical Slicing of Vegetation Indices 

Though many vegetation indices have been developed [23], in this study we focus on 
Normalized Difference Vegetation Index (NDVI) [24]. It is a dimensionless quantity which is an 
indicator of the greenness of vegetation, and is based on the contrast between the maximum 
reflection in the near infrared ( nir ) caused by leaf cellular structure and the maximum absorption 
in the red ( r ) due to chlorophyll pigments [25]. It is expressed as a ratio of the difference and the 
sum of nir  and r : 

nir r

nir r

NDVI=
+
−  (1)

NDVI is the most commonly used indicator of vegetation parameters in remotely sensed data  
for global vegetation mapping [25,26]. It has been applied to quantify the vegetation cover in 
various studies, both in terrestrial environment [27,28] as well as aquatic environment [29]. 
Empirical slicing of vegetation indices is commonly used to discriminate vegetation from other 
cover classes. The challenge, however, is the correct identification of suitable thresholds separating 
various feature classes in the scene. The authors of [13] applied NDVI = 0.1 as a threshold to detect 
presence of vegetation, while [15] estimated the aquatic vegetation cover in Lake Victoria using a 
three-level NDVI scale: 

 (2)

We give a special reference to the NDVI slicing in Equation (2) to assess accuracy of aquatic 
vegetation classification with NDVI slicing. While this slicing clearly provides an excellent display 
of the spatial distribution of vegetation in the lake as seen in [15], in this study we evaluate the 
impact of limiting NDVI to a few classes. NDVI was computed from Landsat-7 ETM+ using red 
and near infrared bands 3 and 4 centred at 660 nm and 825 nm respectively; while MERIS NDVI 
was computed using bands 7 and 13 centred at 664 nm and 865 nm. 
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3.6. Maximum Likelihood Classification 

Maximum likelihood is a conventional classifier, which assigns a pixel to the class to which  
it most probably belongs according to a Bayesian probability function. Based on statistics (mean; 
variance/covariance), the probability function is calculated from the inputs for classes established 
from training sites. In this study, binary images consisting of water and vegetation classes were 
achieved by applying maximum likelihood classifier to MERIS and ETM+. The training sites for 
water and vegetation were obtained from the same images. This was implemented in the software 
package ENVI. 

3.7. Estimating Vegetation Fractional Cover ( vf ) from NDVI 

Vegetation amount is usually parameterized through the fractional area (fv) of the vegetation 
occupying each grid cell, which gives its horizontal density [30]. fv is sometimes estimated from 
vegetation indices. NDVI does not directly give fv, and some methods have been developed to 
derive it from vegetation indices. A commonly-used linear model for deriving fv from vegetation 
indices [31] is described by [16] as: 

v
NDVI NDVIf

NDVI NDVI
ο

ο∞

−=
−

 (3)

where NDVI  and NDVI  respectively correspond to NDVI of reference vegetation ( 1vf = ) and 
reference soil ( 0vf = ). We apply a modified version of this model to estimate aquatic vegetation fv 

with NDVI  being the highest NDVI value (NDVI of a pure vegetation pixel) and NDVI  being the 
lowest NDVI value (NDVI of an open water pixel). Selecting the highest and lowest NDVI  
values ensures that the derived vf  are non-negative and not greater than one. The constants used for  
MERIS data are: 0.96NDVI∞ =  and 0.58NDVIο = −  while for ETM+ data: 0.85NDVI∞ =  and 

0.23NDVIο = − . 

3.8. Linear Spectral Unmixing (LSU) 

Linear spectral unmixing is one of the spectral mixture analysis (SMA) techniques which 
decompose a mixed pixel into various distinct components. It is most suitable where the spatial 
resolution of the satellite data is relatively coarse. It has been applied in various studies including 
analysis of rock and soil types [32], desert vegetation [33], land-cover changes [34], estimation of 
urban vegetation abundance [35], and delineating potential erosion areas in tropical watersheds [9]. 
Non-linear mixture models also exist [36], but linear spectral unmixing is by far the most common 
type of SMA, and is widely used because of its simplicity and interpretability [9]. It is a supervised 
classification technique which is based on the assumption that the observed reflectance of a pixel  
( k ) at wavelength (k) is a linear combination of the reflectance ( ,i k ) of individual class features 
represented in that pixel, and the contribution of each depends on its respective abundance ( if ). 

The basic physical assumption is that there is not a significant amount of photon multiple scattering 
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between the macroscopic materials. For a specified number of endmembers (n), linear spectral 
unmixing can be expressed as: 

,
1

n

k i i k k
i

f
=

= ⋅ +  (4)

k  is the residual error. The unknown value in the expression is the fractional abundance if  and 
which the model estimates. We used a fully constrained model which requires that for all i, if  must 

sum to unity and is non-negative. The number of spectral bands in an image introduces a limitation 
to the number of endmembers that can be used for unmixing [37], so that it must always be less 
than the number of available bands in the multispectral image. The model retrieves the spectral 
characteristics i  of endmembers from an input endmember spectral library. 

In order to build an endmember library for our study region, we first need to identify the 
appropriate number of endmembers. Spectral characteristics of water in the lake vary spatially 
according to the concentrations of dissolved or suspended sediments in it, indicating the extent of 
nutrient enrichment. Clearer and deeper water in the centre of the lake displays low reflectance 
values, while that near the shores displays generally higher reflectance values. In order to 
understand the spectral variability of the study area, we performed K-Means clustering [38,39], an 
unsupervised classification of clouds-free MERIS image whose acquisition date (15 December 2010) 
coincides with a field survey. K-Means is a statistical clustering method which follows the following 
procedure for a specified cluster number (k): (1) randomly choose k pixels whose samples define 
the initial cluster centres; (2) assign each pixel to the nearest cluster centre as defined by the 
Euclidean distance; (3) recalculate the cluster centres as the arithmetic means of all samples from 
all pixels in a cluster; and (4) repeat steps 2 and 3 until the convergence criterion is met. The 
convergence criterion is met when the maximum number of iterations specified by the user is 
exceeded or when the cluster centres did not change between two iterations. We begin by setting k 
first to 14 and specifying 30 iterations. A spectral plot of the 14 resultant classes revealed about 
five significantly unique classes. K-Means was repeated with k = 5, resulting in five classes; one 
confirmed by a field survey as vegetation and four different ‘water species’ confirmed by their 
relatively low reflectance values. A scatter plot of red and near infrared spectral bands for selected 
regions of the resulting five classes (Figure 3) showed that spectral variability among the four 
water classes was small with respect to the vegetation. Since vegetation was our target class, we 
reduced the number of endmembers to two by obtaining an average spectrum  
for the four water classes. Figure 3 shows good separability between vegetation and water classes, 
with vegetated pixels clustered at the top-left corner of the two dimensional space, due to 
vegetation’s strong absorption of the red and high reflection of the near infrared radiation. Water 
pixels are clustered at the bottom right corner, due to water’s strong absorption of the near  
infrared radiation. 

To ensure consistency, endmember spectral libraries for MERIS and ETM+ shown in Figure 4 
were compiled from the same area sampling. 
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Figure 3. Scatter plots of the reflectance values at red and near infrared spectral bands 
to showing separability of vegetation and water classes from MERIS (left) and  
ETM+ (right). 

Figure 4. The MERIS endmember spectral library (left) and ETM+ endmember 
spectral library (right) used in classification. 

 

We apply a fully constrained linear spectral unmixing model (Equation (4)), using as input 
parameters the two endmembers spectral libraries shown in Figure 4, to estimate aquatic (fv) from 
MERIS and ETM+ images respectively. This was implemented in the software package BEAM. 
The model outputs for each endmember a grey scale image, with pixel values indicating the class 
densities (fi) in the range of 0–1. We pick the vegetation density (fv) image for our analysis. We 
then assess the performance of spectral unmixing in vegetation detection using exactly the same 
200 sample pixels that were used for the NDVI accuracy assessment. 
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4. Results and Discussion 

4.1. Area-Averaging of NDVI 

Due to non-linearity nature of NDVI, area-averaged NDVI obtained by averaging NDVIs of 
high resolution pixels is usually different from that obtained with averaged radiances of the high 
resolution pixels. Figure 5 shows a comparison of the two sets of area-averaged NDVI for 200 
samples, each averaged from a hundred high resolution pixels. Even though the two sets of average 
NDVIs seem to compare well with R2 = 0.98 and RMSE = 0.04, variations of mean NDVI 
computed from the two methods can be as high as 0.17 (see the green dots in Figure 5). This 
difference is quite significant especially for a study where averaged NDVI is an important variable 
used to derive another parameter. In this study, the NDVI of a square area represented by 100 ETM+ 
pixels corresponding to one MERIS pixel was obtained by first averaging the reflectance of 100 
ETM+ pixels in the red and near infrared, before using them to compute NDVI. 

Figure 5. A comparison between two ways of averaging NDVI. Blue dots show a 
scatter plot of NDVI computed from average high resolution radiances versus NDVI 
computed as an average of high resolution NDVIs. The green dots show the difference 
between the two sets of NDVI. 

 

4.2. Sliced Normalized Difference Vegetation Index (NDVI) 

Figure 6 shows NDVI images of the Winam Gulf section of Lake Victoria as derived from 
MERIS and ETM+ data. Figure 6a is MERIS NDVI while Figure 6c is ETM+ NDVI. The large 
green area in the centre of the lake is a floating mat of aquatic vegetation. The image shows the 
three classes described in Equation (2); open water (OW), sparse vegetation (SV) and floating 
vegetation (FV). The stripes in ETM+ image are a consequence of the SLC failure in the Landsat-7 
satellite, resulting in no-data pixels. As expected, it is clear from these images that the higher 
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resolution ETM+ (30 m) displays more vegetation cover details than MERIS (300 m), as seen from 
the close-up portions of the images. 

Figure 6. NDVI sliced to 3 levels: open water (OW), sparse vegetation (SV) and 
floating vegetation (FV), showing the distribution of vegetation as derived from (a,b) 
MERIS and  (c,d) ETM+. 

(a) (b) 

 
(c) (d) 

Error matrices in Table 3 show the quantitative assessment of the classification accuracy of 
NDVI slicing. The rows show classification of the 200 MERIS sample pixels to the three classes of 
Equation (2); FV, SV and OW. The columns show classification of the reference pixels (ETM+) to 
the same classes according to Equation (2). 

Table 3. Error matrices for image pair 1 (left) and pair 2 (right) showing classification 
performance of NDVI sliced into floating vegetation (FV), sparse vegetation (SV) and 
open water (OW). 
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The diagonal matrix of the error matrix of the first image pair, Table 3(left), shows that 153 of 
the 200 sample pixels are correctly classified, which gives an overall classification accuracy of 
76.5%. The error matrix of the second image pair, Table 3(right), shows an overall classification 
accuracy of 73%. In both cases, the commission and omission errors in the classification of SV are 
higher than those of FV and OW, indicating that major misclassifications occurred along the  
water-vegetation boundaries. These results seem to confirm the findings of [31], where the reported 
classification accuracies for NDVI of pixels along the edges of distinct endmembers were generally 
lower than those of non-edges. This is a common weakness to all “hard” classifiers which output 
discrete feature classes, and only gets worse with lower resolutions. Since NDVI slicing is heavily 
biased along the water-vegetation boundaries, it may have a significant impact on detection of 
aquatic vegetation from low resolution data. Slicing NDVI to a few levels also limits its sensitivity 
to vegetation density variations. 

It is however known that some errors are due to the low resolution of the data rather than the 
weakness of the classification algorithm, a concept known as “low resolution bias” explained  
by [40] using Pareto Boundary. Using the Pareto Boundary, it is possible to determine the optimal 
classification accuracies that can be obtained by an algorithm, beyond which it is impossible to 
reduce the commission errors without increasing the omission errors, and vice versa. If all the pure 
pixels are correctly classified, then the irreducible errors are assumed to be due to the low resolution 
of the data. We refer readers to article [40] for a detailed description of the low resolution bias. 

Figure 7 shows Pareto Boundaries for the optimal classification of floating vegetation, sparse 
vegetation and open water. This was obtained by setting a series of thresholds for the number of 
high resolution pixels of a specific class that are required to assign a low resolution pixel to that 
class, and computing the commission and omission errors incurred at each threshold level. Though 
Pareto Boundary applies only to dichotomic classifications, these results were obtained by first 
considering FV and collapsing SV and OW into the background, and repeating the procedure for SV 
and OW; resulting in three Pareto Boundaries, one for each class. Positions of the commission and 
omission errors obtained from the error matrix are shown in the commission error—omission error 
space; indicating how close the classification results are to the optimal levels. 

In both image pairs, the positions of the commission and omission errors of SV are clearly 
farther away from their Pareto Boundaries, further confirming observations made from Table 3, 
that slicing of NDVI results in major misclassifications especially along the water-vegetation 
boundary. The radiance from this multi-class boundary received by a low resolution sensor is a 
combination of the spectral responses of the representative classes, and a “hard” classification of 
such a pixel results in high commission and omission errors. 

4.3. Maximum Likelihood Classification 

Error matrices in Table 4 show accuracy assessment of vegetation delineation obtained with 
binary Maximum Likelihood classifier for image pair 1 (left) and image pair 2 (right). 

The rows show classification of MERIS sample pixels to two classes; FV and OW. The columns 
show classification of regions corresponding to MERIS sample pixels to two classes; FV class for 
regions half or more of ETM+ pixels are classified as vegetation, and OW class where less than 
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half of ETM+ pixels are classified as vegetation. These results show an overall classification 
accuracy of 81.5% and 78.5% for pair 1 and pair 2 respectively. Pareto boundary analyses of the 
trade-off between commission and omission errors in these classifications are presented in Figure 
8. In both cases, the positions of the omission and commission errors in the classification of 
vegetation and water are close to their respective Pareto boundaries, indicating a good performance 
of the classifier. 

Figure 7. An analysis of the trade-off between commission and omission errors in the 
classification of floating vegetation (FV), sparse vegetation (SV) and open water (OW) 
by NDVI slicing for image pair 1 (left) and image pair 2 (right). Pareto Boundaries 
show the optimal classifications that can be achieved with low resolution MERIS data 
using reference obtained with higher resolution ETM+. Positions of the omission and 
commission errors in the classification of FV, SV and OW are shown in the error space. 

 

Table 4. Error matrices for image pair 1 (left) and pair 2 (right) showing performances 
of Maximum Likelihood in the classification of floating vegetation (FV) and open water 
(OW). 
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4.4. Estimating Vegetation Fractional Cover (fv) from NDVI 

Figure 9 shows a comparison between  derived from MERIS NDVI using the NDVI-based fv 

retrieval model (Equation (3)) with reference fv derived from ETM+ NDVI with the same method. 
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The results show an RMSE of 0.11 and 0.09 for image pair 1 and 2 respectively, indicating 
the level of errors incurred in estimating fv from low resolution MERIS data using NDVI-based 
fv retrieval model. 

Figure 8. An analysis of the trade-off between commission and omission errors in the 
classification of floating vegetation (FV) and water (OW) by maximum likelihood. 
Pareto Boundary shows the optimal classification that can be achieved with coarse 
resolution MERIS data with reference obtained from ETM+. Positions of the omission 
and commission errors in the classification of FV and OW is shown in the error space 
for image pair 1 (left) and image pair 2 (right). 

 

Figure 9. Correlation between fv derived from MERIS NDVI with reference fv derived 
from ETM+ NDVI, for image pair 1 (left), and image pair 2 (right). 

4.5. Spectral Unmixing 

Figure 10 shows vf  results of spectral unmixing of MERIS and ETM+ images. The scale 
indicates vf  increasing from blue (open water surface) to green (fully dense vegetation cover). 
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Figure 10. The spectral unmixing classification results of (a,b) MERIS and (c,d) 
ETM+. The images show increasing fv from blue (open water surface) to green  
(fully vegetated). 

(a) (b) 

 
(c) (d) 

As seen in the close-up of the two images, both the low and high resolution data display fv even 
in the sparsely populated areas. This is the advantage of spectral unmixing and similar methods 
which output fv, so that no vegetation information is lost however small the proportion of the pixel 
it covers. Of course the accuracy of the model in estimating these densities decreases with reduced 
resolution, but this problem is not unique to spectral unmixing. 

A comparison of fv derived with spectral unmixing from MERIS imagery with those derived 
from the reference ETM+ data (Figure 11), shows an RMSE of 0.10 for both image pair 1 and 2, 
indicating the level of accuracy conceded for deriving fv at lower resolution. 

The methods showed varying results when tested with two sets of samples; dense vegetation  
(case 1), and sparse vegetation (case 2). Sliced NDVI showed classification accuracies of 96% and 
52% for case 1 and 2 respectively, indicating better performance at high vegetation densities. This 
heavy bias along the water-vegetation boundaries may have a significant impact on detection of 
sparse aquatic vegetation from coarse resolution data. Maximum likelihood classifier showed 
accuracies of 98% and 72% for case 1 and 2 respectively, also indicating better performance at 
high vegetation densities. The method of deriving fv from NDVI also showed better performance at 
higher vegetation densities with RMSE of 0.04 and 0.15 for case 1 and 2 respectively, because this 
method was designed as a dense vegetation model. Spectral unmixing showed minimal variation in 
the two vegetation density scales, with RMSE of 0.10 and 0.09 for case 1 and 2 respectively. These 
results show that detection accuracy of vegetation may vary with the density scale of vegetation 
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cover, but with moderate effect on the results of maximum likelihood and minimal effect on the 
results of spectral unmixing. Spectral unmixing decomposes the pixel into various class features 
according to their relative abundances, and no vegetation cover information is discarded even if it 
constitutes a small proportion of the pixel. Spectral unmixing appears to be the most suitable 
method of estimating the extent of vegetation cover with coarse resolution products, but if an 
endmember spectral library is unavailable—due to technicalities involved in compiling it—the 
NDVI-based approach may be appropriate alternative, but only over dense vegetation. 

Figure 11. A scatter plot showing a correlation between fv obtained from MERIS  
pixels and the corresponding mean fv obtained from ETM+ pixels for image pair 1 (left) 
and image pair 2 (right). 

 

Remote sensing has a huge potential of providing crucial decision support information required 
for the control of aquatic plants proliferation. Changes in the status of aquatic plants in inland 
waters sometimes occur rapidly, and thus require regular and frequent monitoring. Due to the 
dynamic nature of floating aquatic plants, the technique of mosaicking small pieces of high 
resolution remote sensing products is not feasible. For large water bodies, vegetation cover 
information is best derived with remote sensing products with sufficiently large swath and high 
acquisition frequency. Most of these products are associated with coarse spatial resolution. For 
each of the methods evaluated in this study, the accuracy of obtaining vegetation cover information 
at coarse resolution has been analysed. It is worth noting that some of the vegetation detection 
errors discussed may be due to geolocation errors as a result of misregistration of the image pairs, 
and some due to displacement of floating plants. Considering the dynamic nature of floating plants, 
the acquisition interval between the image pairs is crucial in assessing the accuracy of aquatic 
vegetation information derived at coarse resolution. The appropriate interval can be determined by 
considering the spatial resolution of the image pairs as well as the rate of vegetation displacement; 
the latter can be estimated by considering wind speed. 
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5. Conclusions 

Timely and frequent observations of large water bodies can provide the information needed to 
reposition the resources at hand for interventions (e.g., mechanical removal) to mitigate the impact 
of aquatic vegetation. While it is desirable to use finer resolution products to accurately detect 
small changes in the proliferation of aquatic plants, coarse resolution products remain best suited 
for the management of the plants in extensive water bodies. Understanding which remote sensing 
techniques work best with these coarse resolution products is thus necessary. In this study we 
analyzed the accuracy of vegetation cover information derived from coarse resolution MERIS 
product in terms of delineating aquatic plants, as well as estimating its surface extent, in both cases 
using as reference the results obtained with Landsat-7 ETM+ acquired almost simultaneously  
with MERIS. 

In terms of delineation of aquatic plants, we evaluated two methods: NDVI slicing and 
Maximum Likelihood classifier. NDVI slicing produced an average classification accuracy of 75%, 
but showed a lower performance of 52% over sparse vegetation, with Pareto Boundary analysis 
showing largest commission and omission errors in these regions. Maximum likelihood classifier 
showed an average classification accuracy of 80% and a lower performance of 72% over sparse 
vegetation. In general, maximum likelihood classifier showed better performance than NDVI 
slicing, and the fragmentation of vegetation cover showed lesser effect on the performance of 
maximum likelihood than NDVI slicing. 

In terms of total area estimation, we evaluated two methods: NDVI-based vegetation fractional 
cover retrieval method suggested by Gutman and Ignatov [16], and linear spectral unmixing. 
NDVI-based approach showed an average root mean square (RMS) error of 0.097, but larger errors 
of 0.15 over sparse vegetation. Linear spectral unmixing showed an average RMS error of 0.096, 
with similar performance over dense and sparse vegetation. The two methods seem to have similar 
performance over dense vegetation, but while the performance of NDVI-based approach 
significantly drops at sparse vegetation that of spectral unmixing remains invariant with the scale of 
vegetation density. 

In summary, among the methods evaluated in this study, we recommend maximum likelihood  
for the delineation of aquatic plants and spectral unmixing for estimation of its surface extent, as 
the methods produce more accurate results and their performances are less sensitive to the 
fragmentation of aquatic vegetation cover. 
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Water Level Fluctuations in the Congo Basin Derived from 
ENVISAT Satellite Altimetry 

Mélanie Becker, Joecila Santos da Silva, Stéphane Calmant, Vivien Robinet, Laurent Linguet 
and Frédérique Seyler 

Abstract: In the Congo Basin, the elevated vulnerability of food security and the water supply 
implies that sustainable development strategies must incorporate the effects of climate change on 
hydrological regimes. However, the lack of observational hydro-climatic data over the past decades 
strongly limits the number of studies investigating the effects of climate change in the Congo 
Basin. We present the largest altimetry-based dataset of water levels ever constituted over the 
entire Congo Basin. This dataset of water levels illuminates the hydrological regimes of various 
tributaries of the Congo River. A total of 140 water level time series are extracted using ENVISAT 
altimetry over the period of 2003 to 2009. To improve the understanding of the physical 
phenomena dominating the region, we perform a K-means cluster analysis of the altimeter-derived 
river level height variations to identify groups of hydrologically similar catchments. This analysis 
reveals nine distinct hydrological regions. The proposed regionalization scheme is validated and 
therefore considered reliable for estimating monthly water level variations in the Congo Basin. 
This result confirms the potential of satellite altimetry in monitoring spatio-temporal water level 
variations as a promising and unprecedented means for improved representation of the hydrologic 
characteristics in large ungauged river basins. 

Reprinted from Remote Sens. Cite as: Becker, M.; da Silva, J.S.; Calmant, S.; Robinet, V.; Linguet, L.; 
Seyler, F. Water Level Fluctuations in the Congo Basin Derived from ENVISAT Satellite Altimetry. 
Remote Sens. 2014, 6, 9340-9358. 

1. Introduction  

Despite the global importance of the Congo Basin, which is the second largest river basin in the 
world, only a small number of studies to date have focused on the potential impact of climate 
change on the hydro-climatic variability over the Congo Basin using in situ data and/or 
hydrological models. The limited understanding of climate dynamics in the Congo Basin is in part 
due to the lack of the in situ monitoring of climate variables in that area. Climate and hydrological 
station networks are sparse and poorly maintained; the small number of networks that were 
implemented during the colonial period has shrunk considerably [1–3]. The Congo Basin has 
experienced a turbulent history since pre-colonial times [4,5]. The resultant political instability, 
social unrest, and poor infrastructure may partly explain the lack of scientific attention [6]. Another 
great obstacle is the substantial difficulty of performing fieldwork in the Congo swamps. This large 
gap in understanding hydro-climate processes in this region increases the uncertainties in the 
evaluation of risks associated with decision making for major water resource development plans [7]. 
Conversely, recent improvements in remote sensing technology provide more observations than ever 
before that can advance hydrological studies [8,9], particularly in tropical regions. Given the vast size 
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of the Congo Basin, remote sensing observations provide the only viable approach to understanding the 
spatial and temporal variability of the basin’s hydro-climatic patterns. Several studies have therefore 
begun to address this topic by using remote sensing observations with a particular focus on hydrology. 
The following paragraph summarizes the results obtained by previous investigations.  

Rosenqvist and Birkett [10] showed that temporal changes in river water levels in the Congo 
Basin can be derived from radar imagery. Eltahir et al. [11] inferred an anti-correlation in runoff 
anomalies between the Amazon Basin and the Congo Basin using two in situ time series of river 
flow from records at Manaus and Kinshasa, respectively, coupled with satellite-derived estimates 
of rainfall from the Tropical Rainfall Measuring Mission (TRMM). These authors argued for a 
climatic “see-saw oscillation” from one side of the Atlantic to the other. Crowley et al. [12] 
estimated terrestrial water storage within the Congo Basin from 2002 to 2006 from Gravity 
Recovery and Climate Experiment (GRACE) data. This estimate showed significant seasonal and 
long-term trends, with a total loss of approximately 280 km3 of water over the study period.  
Jung et al. [13] evaluated the potential of space-borne radar for monitoring the large, 
subcontinental-scale river basins of the Amazon and Congo Rivers. The authors documented 
temporal changes in water surface elevations over time to reveal strikingly different flood 
behaviors in the Amazon and the largely undocumented Congo systems. The Congo system 
displayed less connectivity between the main and floodplain channels than did the Amazon system 
and exhibited more subtle changes during rising and falling limbs of the seasonal hydrograph.  
Lee et al. [14] used remote sensing measurements (i.e., GRACE, satellite radar altimetry, GPCP, 
JERS-1, SRTM, and MODIS) to estimate the amount of water entering and exiting Congo wetlands 
and to determine the source of that water. O’Loughlin et al. [15] produced the first detailed 
hydraulic characterization of the middle reach of the Congo River utilizing mostly remotely sensed 
datasets (Landsat imagery, ICESat).  

Our paper contributes to this body of work by providing an investigation of the ENVISAT 
altimetry data to analyze contemporary river dynamics in the Congo Basin over the period  
2003–2009, for which in situ level measurements are insufficient or non-existent. The paper is 
organized as follows. Section 2 describes the main characteristics of the study area. Section 3 
presents the different datasets and the methods used in the study. Section 4 presents the resulting 
classification of the river water level signatures. Section 5 validates the regionalization and 
discusses the seasonal dynamics of river water levels. Finally, Section 6 discusses several issues 
concerning the applicability of the altimeter-based techniques for the Congo Basin. 

2. Study Area: Congo Basin 

2.1. Location 

The Congo River Basin is a transboundary basin located in western equatorial Africa that 
extends over 3.7 million km2 (Figures 1 and 2). This shallow depression along the equator in the 
heart of Africa, named “Cuvette Central Caongolaise” [16], is bordered by higher areas (Figure 1): 
the Chaillu Mountains (900 m) and the Batéké Plateau (600–800 m) lie to the west and southwest. 
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Figure 1. Elevation map based on the HydroSHEDS (Hydrological data and maps 
based on SHuttle Elevation Derivatives at multiple Scales). 

 

Figure 2. The principal tributaries and lakes in the Congo Basin. 
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North of the basin are the Adamawa Plateau (1500 m) and the flanks of the Central African Rift  
(600–700 m), the boundary between the Congo and the Chad Basins, and the Bongo Massif (1300 
m and higher). To the east, the most important relief is that of the volcanic foothills of the East 
African Rift, which reach altitudes of 2000–3000 m. The Katanga and Lunda Plateaus (1000–1500 
m) bound the southern part of this vast watershed. 

2.2. Hydrological System 

The Congo Basin features a complex hydrological system composed of the Congo River, its 
many tributaries, and extensive swamps. The sources of the Congo River are on the highlands of 
the East African Rift in Lake Tanganyika, which feeds the Lukuga and Lualaba Rivers; these 
become the Congo River at Kisangani, below Boyoma Falls (Figure 2). The other two principal 
tributaries of the Congo are the Kasai River from the south and the Ubangi River from the north.  

The Ubangi River is formed by the confluence of the Uele and Bomu rivers. Other main 
tributaries of the Ubangi River are the Bori River, the Kotto River and the Ouake River. The major 
tributaries of the Kasai River are the Kwango River and the Lulua River. They join to form the 
Kasai River from the south and drain a large part of the southern and southwestern Democratic 
Republic of Congo and northern Angola. The Fimi/Lukenie system runs parallel to and just north 
of the main Kasai River. Water draining from Lake Mai-Ndombe empties south through the Fimi 
River into the Kasai River. The Sangha River is a second-order tributary of the Congo River.  

2.3. Climate 

The Congo River receives year-round rainfall from the migration of the Inter-Tropical 
Convergence Zone (ITCZ). The northern part of the basin experiences a minor rainy season from 
September to November and a major one from the first half of March to early May; in the south, 
the minor rainy season lasts from February to May, and the major rainy season occurs between 
September and December. The source regions receive an average annual rainfall of 1200 mm. The 
middle and the downstream parts of the watershed receive 1800–2500 mm of rainfall per year and 
experience almost no dry season [16–18].  

3. Primary Datasets and Methods 

3.1. Altimetry and Virtual Station Data 

The European Space Agency launched the ENVIronmental SATellite (ENVISAT) in March 
2002 as part of its Earth Observation Program. This mission concluded in April 2012. ENVISAT 
carried ten instruments [19], including a nadir radar altimeter (RA-2 or Advanced Radar 
Altimeter). The ground track of the nominal ENVISAT orbit over the Congo Basin is shown in 
Figure 3. At all points where a satellite track intersects a water body, or “virtual stations”, we 
extracted a water level time series, which allowed us to measure the successive water levels at each 
pass of the satellite over the large rivers channels, smaller tributaries and wetlands within  
sub-basins of the Congo Basin. The raw ENVISAT data are freely distributed by the Center for 
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Topographic studies of the Ocean and Hydrosphere (CTOH, [20]) in the standardized format of 
along-track Geophysical Data Records (GDRs). These data include four estimates of the distance 
between the satellite antenna and the ground, or the range. These four ranges are obtained by 
processing the radar echo with a dedicated algorithm called a retracker. Although none of  
the four retrackers had been tuned for echoes from river surfaces, Frappart et al. [21] and  
Santos da Silva et al. [22] showed that the ice-1 algorithm [23] performed well over rivers. 
Therefore, in this study, we used the ice-1 ranges when processing the raw ENVISAT data to 
compute water level time series at each virtual station. Our corrections are of two types: 
propagation corrections and geophysical corrections. The geophysical corrections are designed to 
remove instantaneous crustal movements. We applied corrections for solid earth and polar tides. 
Propagation corrections are designed to correct for the propagation of the electromagnetic wave as 
the radar travels through an ionized medium, the ionosphere, and a dense medium, the troposphere. 
We applied the corrections derived from global models as provided in the GDRs, in particular the 
tropospheric corrections derived from the European Centre for Medium-Range Weather Forecasts 
(ECMWF) meteorological model. We obtained the water stage time series between 2003 and 2009 
(complete years) at 140 virtual stations (Figure 3) using the Virtual ALtimetry Station Tool 
(VALS) [24] for the ENVISAT tracks crossing the Congo Basin.  

Figure 3. Location of ENVISAT tracks over the Congo Basin. Points represent the  
140 virtual stations, with the 99 selected stations shown in black. 
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Details regarding the procedure used to process the data using VALS can be found in  
Santos da Silva et al. [22]. In this study, the water level data are referenced to the EGM2008 geoid  
model [25]. The water level time series at every virtual station passed a quality control test for gaps 
and/or shifts in the data. All time series with gaps greater than 3 consecutive months were deleted.  
All time series with a visually detectable spurious strong shift were also deleted. For the remaining 
time series, outliers were identified using Rosner’s test [26] and removed. When small gaps  
( 3 consecutive months) were observed, we reintroduced missing data by linearly interpolating the 
time series. Only 99 time series from the initial dataset of the 140 river water level series (RWL) 
satisfied these requirements (Figure 3). In this study, we use water level data rather than river 
discharge data. Because direct measurements of discharge in river channels can be time-consuming 
and costly, flow is often estimated indirectly by the rating curve method [27]. According to this 
technique, measurements of a river stage are converted to river discharge by a function (rating 
curve), which is preliminarily estimated by using a set of stage and flow measurements. Hence, 
uncertainties in measurements and the rating curve method increase the final uncertainty. Using the 
river level data is thus more straightforward in this region because we lack the data needed to 
calculate the rating curve at each virtual station. Moreover, this study uses water levels rather than 
discharge because, unlike in situ data, altimetry-derived stages are related to a common geoidal 
reference; the classification process used and described hereafter allows us to separate and analyze 
the section morphology effect while also not increasing the corresponding uncertainties by 
estimating discharge from stages. 

3.2. Brazzaville Gauging Station 

The time series of monthly water levels at Brazzaville (Figure 2. 15.3°E and 4.3°S) over the 
period 2003–2009 is selected from the Environmental Research Observatory HYBAM [28] Station: 
50800000 Rio Congo at Congo Beach Brazzaville, covering the period from 1990 to the latest 
available year). This time series is used to evaluate our classification method. The same quality 
control process applied to the virtual stations was applied to this time series.  

3.3. Lake Water Level 

The monthly water level time series of Lake Mweru (Figure 2, 29.8°E and 8.7°S) and Lake 
Tanganyika (Figure 2, 29.5°E and 6.5°S) are available through Hydroweb [29]. Hydroweb is 
developed by LEGOS (Laboratoire d'Etudes en Géophysique Océanographie Spatiales) in France 
and provides water level time series of large rivers, approximately 150 lakes and reservoirs, and 
wetlands around the world using the merged data from the Topex/Poseidon, Jason-1, Jason-2, 
ENVISAT, European remote sensing satellite (ERS) and Geosat Follow-On (GFO) satellite 
missions. The processing procedures of Hydroweb are described in Crétaux et al. [30]. The 
Hydroweb lake water levels are monthly values obtained by merging measurements from different 
tracks of different altimeter satellites overflying the same lake in the same month [30]. These time 
series will be used to evaluate our classification method. 
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3.4. K-Means Clustering 

The K-means is a common algorithm for classifying objects into K clusters, with K being a 
positive integer number. The classification is performed by minimizing the sum of squares of 
distances between data and the corresponding cluster centroid. Thus, the sample is assigned to a 
cluster based on minimizing, in its simplest form, the Euclidean distance between the vector of its 
variables and the means of the variables within a cluster. The K-means algorithm proceeds by 
updating the mean and grouping the data again. This procedure continues until all samples no 
longer change clusters. Given a dataset, a desired number of clusters K, and a set of K initial 
starting points, the K-means clustering algorithm finds the desired number of distinct clusters and 
their centroids. The K-means algorithm is described in more detail by Hartigan [31] and Hartigan 
and Wong [32]. In hydrology, the K-means algorithm and its variants have been used primarily in 
the regionalization of watersheds [33–37]. In this study, K-means analysis is performed for 
predefined cluster numbers varying from 5 to 15, where 15 is the maximum number of groups that 
maintains sufficient sample sizes in each group. To choose the initial cluster centroid positions, we 
select K uniform points at random from the range of the normalized parameters. The chosen 
parameter vectors are elevation data based on the HydroSHEDS DEM data at 30 arc-second 
resolution [38], river water level anomaly (RWLA) amplitude, dates of low and high stages and 
interannual correlation structure (lag-1), representing the dynamic component of the process. For 
example, if the autocorrelation in a time series at lag-1 is high (>0.6) the values are highly 
correlated with the value in the previous month. We run 10,000 replicates from randomly chosen 
starting parameter vectors; all runs converge to the same solution. The optimal number of clusters 
to retain is determined with the aid of the Davies–Bouldin index, a cluster validity measure that is a 
function of the ratio of the sum of within-cluster dispersion to between-cluster separation [39]. We 
calculate the separation measure for numbers of clusters ranging from 5 to 15. We filter our results 
according to certain specific criteria, such as a homogeneous distribution of observations within 
each cluster and no single-member clusters. 

4. Results of the RWLA K-Means Clustering 

The first step of the proposed approach is to cluster the 99 time series of altimeter-derived 
RWLA to identify groups with similar characteristics, defined by a conservative set of 
morphometric and hydrologic parameters. This study is developed for the RWLA is hereafter 
defined as the difference between the water level value and the temporal mean of the time series. 
Finally, according to these requirements presented in Section 3.4, the RWLA dataset is divided into 
9 clusters exhibiting similar features. The optimal cluster locations are shown in Figure 4, and a 
topology map of RWLA signature vectors is shown in Figure 5. The topology highlights the 
variation of the RWLA features along the different classes, characterizing the behavior of the input 
variables and their interrelations. The RWLA time series composing each cluster are shown in 
Figure 6. 
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Figure 4. Optimal locations of the 9 clusters over the Congo Basin. Each circle 
represents the location of a virtual station and is color-coded to indicate its affiliation to 
a particular cluster. Light-gray circles with black crosses inside represent the “Outliers” 
cluster. These data are not used in the K-means clustering. 

 

Figure 5. Optimal cluster topology of RWLA signature vectors. 
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Figure 6. Left panel: The nine groups found by using K-means time series clustering 
in the 99 RWLA time series (black lines). The number of RWLA time series in each 
cluster is presented in parentheses. Right panel: The bold line represents the mean of 
the RWLA for each cluster, and the envelope (gray) shows the 5% and 95% quartile of 
the mean. 

 

Cluster “Upper Uele”, in the extreme northeast of the Congo Basin, contains 9 RWLA time 
series. Cluster “Lower Uele” contains the downstream part of the Uele River and its confluence 
with the Bomu River; the cluster includes 13 RWLA time series. Cluster “Ubangi” is composed of 
10 RWLA time series. Cluster “Central Congo” contains 5 time series located along the Congo 
River after its confluence with the Ubangi River and prior to its confluence with the Kasai River. 
Cluster “Central Lualaba” includes 3 RWLA time series. Cluster “Lower Lualaba” is formed by 7 
RWLA time series, 4 of which are located in the eastern part of the basin along the Lualaba River 
between the confluences with the Ulindi River and the Lomami River. The remaining 3 times 
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series of this cluster are located along the Kasai River. For this cluster, we observe a large 
dispersion of the lag-1 coefficient, most likely because the RWLA time series are not located on 
the same rivers and therefore have different temporal correlation structures. Cluster “Cuvette 
Centrale” contains 31 RWLA time series. This cluster includes RWLA time series located in three 
regions: on the main stream of the Congo River between the confluences of the Lomami River and 
the Ubangi River, along the Ruki and Tshuapa Rivers, and along the Fimi and Lukenie Rivers. The 
16 RWLA time series that compose Cluster “Kasai” are located in the meridional part of the Congo 
Basin. Cluster “Outliers” contains 4 RWLA time series spread throughout the basin. From the 
comparison shown in Figure 6, we can conclude that there is no good consistency between the time 
series in this cluster and we therefore removed it from consideration in the remainder of the study. 

5. Validation of the RWLA Regionalization 

Mahé [40] defined four great climatic zones over the Congo Basin: the North (Ubangi River 
Basin), where the influence of the North African continental air mass is prominent; the South 
(Kasai River Basin), which is influenced by South African air masses; the eastern and south-eastern 
parts of the basin (Lualaba River Upper Basin), which are influenced by the humid Indian Ocean 
air masses; and the Center-West, where the climate is controlled by the Atlantic Ocean. The 
seasonal partition of rainfall is bimodal along the equator and becomes unimodal farther north and 
south. We should therefore typically observe two-peak hydrographs (bimodal) for rivers near the 
equator and a gradual transformation into one-peak hydrographs (unimodal) farther north and south 
of the equator. We use this hypothesis to validate our RWLA regionalization. Figure 7 shows the 
hydrographs of monthly mean RWLA from 2003 to 2009 for each cluster. For each of the clusters, 
we verify that their time series show the same seasonal dynamics. 

5.1. The North-Ubangi River Basin  

Cluster “Upper Uele”: We observe a unimodal distribution of the RWLA in all years except 
2009. This cluster is characterized by a high water level from September to November and a low 
water level from February to March. The transition period, May to June, is very short. The years 
2004, 2005, 2006 and 2009 were particularly dry (average RWLA < 0.5 m), whereas in 2003, the 
RWLA was greater than 1 m for 4 months (August through November). The seasonal variability 
contributed between 1 to 1.8 m over this period. 

Cluster “Lower Uele”: The distribution of RWLA is unimodal, with low water levels from 
March to April and high water levels from September to October. These dynamics are comparable 
to the monthly maxima and minima recorded by the historical river gauge at Bondo in 1956, located on 
the Uele River (Rosenqvist and Birkett [10], in Table 2). The seasonal amplitude is approximately 3 m 
over our study period. 
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Figure 7. Hydrograph of the RWLA mean for each cluster. 

 

Cluster “Ubangi”: The RWLA time series of this cluster are relatively homogeneous from 2003 
to 2009. The distribution is unimodal. The dry season occurs from December through March  
(4 months), followed by rising water in May and a high water level in October. From November to 
January (3 months), we observe a rapid decrease in water level. These dynamics are similar to the 
monthly maxima and minima recorded by the historical river gauge at Bangui over 1890–1955, 
located on the Ubangi River ([10], in Table 2). This cluster has the largest seasonal variability in 
terms of RWLA, approximately 4.1 m over our study period. 

5.2. The Southeast–Central and Upper Basins of the Lualaba River 

Cluster “Central Lualaba”: The RWLA in this cluster shows marked variability from one year 
to another. The distribution of the RWLA is unimodal, with high water levels from April to May 
and low water levels in October. These dynamics are consistent with the changes in water level 
recorded by the historical river gauge at Kindu over 1912–1955, located on the Lualaba River 
(Table 2 in Rosenqvist and Birkett 2002 [10]). We can observe 2 different periods in RWLA:  
(1) the seasonal variability from 2003 to 2006 shows well-marked minima and maxima but slight 
amplitude variations; (2) the seasonal variability over 2007–2009 shows well-marked minima and 
maxima and very large amplitude variations. In 2007, the extreme anomaly (2.2 m) was, on 
average, 4 times greater than the minimum values during the first period (~0.5 m). We observe 
evidence of completely different behavior of the RWLA in the year 2006. The temporal structure 
of low and high water levels is retained, but all the values are either near 0 m or negative, except in 
December. During the 3 months from October to December, we observe an increase in water level 
by more than 2.2 m. This extreme RWLA variability in 2006 and 2007 can be explained by  
hydro-climatic changes occurring in the East African Rift region. This cluster is located 
downstream on the Lualaba River (elevation ~500 m), which is fed by Lake Tanganyika and Lake 
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Mweru. The extreme water levels are most likely related to the 2005 severe drought reported in 
Equatorial East Africa [41] and to the positive strong Indian Ocean Dipole (IOD) in 2006. Similar 
behavior has been noted for other continental water cycle parameters. For example, Becker et al. [42] 
confirmed that precipitation and terrestrial water storage in the East African great lakes region have 
a common mode of variability, with a minimum in late 2005 and a sharp rise in 2006–2007. The 
authors showed that this event was due to forcing by the 2006 IOD on East African rainfall. As 
expected, we observe asymmetry in RWLA seasonal variability between the northern and the 
southern regions due to their locations on both sides of the equator. A comparison between the 
RWLA mean time series from the “Central Lualaba” cluster and the water level (WL) time series 
of Lake Mweru and Lake Tanganyika, computed from the T/P, Jason-1, Jason-2, ENVISAT, ERS 
and GFO satellite missions and provided by Hydroweb is presented in Figure 8a. The Luvua River 
exits Lake Mweru and flows northwest, and the Lukuga River drains Lake Tanganyika. These 2 
rivers join the cluster on the Lualaba River.  

Figure 8. (a) Comparison of Cluster 4 RWLA time series with Lake Tanganyika and 
Lake Mweru Lake water level time series obtained from Hydroweb over 2003–2009. 
The time series are normalized to place them on the same scale; (b) Comparison of 
Cluster 7.a RWLA time series with RWLA at Brazzaville gauging station obtained 
from ORE-HYBAM over 2003–2009. 

 

The RWLA seasonal variability from the cluster agrees well with the WL seasonal variability of 
the two lakes. We observe a lagged correlation coefficient of 0.9 between the cluster RWLA and 
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Lake Mweru WL with a delay of 1–2 months for the Lake Mweru WL. Further work concerning 
the hydrology of this region is necessary to explain the 1–2 month delay observed between the 
cluster and Lake Mweru. The correlation coefficient is 0.7 (p-value < 0.001) between the RWLA 
cluster and the Lake Tanganyika WL; no significant delay is detected between these two curves. A 
slight trend is observed in the Lake Tanganyika WL before 2007, but it is not observed in the 
RWLA of the cluster and Lake Mweru. Such consistency between the RWLA and WL time series 
enables us to validate this cluster. 

5.3. The South-Kasai River Basin 

Cluster “Kasai”: We observe a unimodal RWLA distribution of this cluster time series over the 
studied period. The RWLA minima occur from August to September, and the maxima occur from 
January to April. RWLA maxima occur in January (2003, 2005 and 2007) or April (2004, 2006, 
2008 and 2009), usually in alternating years. The seasonal variability is between 1.8 and 2 m over 
the period. These dynamics are comparable with the monthly maxima and minima distribution 
recorded by the historical river gauge at Mushie in 1932–1955 and at Ilebo in 1924–1955, both 
located on the Kasai River ([10], in Table 2). 

5.4. The Center-West–Congo River Basin 

Cluster “Cuvette Centrale”: This cluster holds the largest number of RWLA time series (31) 
and has the largest latitudinal variability (from 2.5°N to 6°S). To avoid over-parameterization, we 
do not include prior information regarding the latitude coordinate or the RWLA bimodal/unimodal 
seasonal signature in the K-means clustering method. It is thus prudent to check the homogeneity 
of the RWLA seasonal variability within this cluster. As might be expected, we clearly observe 2 
sub-clusters: (1) 20 RWLA time series located on the main stream of the Congo River and the 
Tshuapa River (hereafter named Cluster “Congo-Tshuapa”); (2) 11 RWLA time series located on 
the Lukenie River (hereafter named Cluster “Lukenie”). The RWLA time series of the cluster 
“Congo-Tshuapa” has a bimodal distribution. The water levels begin to rise in August and 
September due to rainfall intensification in the southern hemisphere. The high-water period is 
reached in December and lasts a relatively short time. The secondary low-water period occurs in 
March, during the dry season that prevails in the northern hemisphere tributaries. The primary  
low-water period in July and August corresponds to the dry season that prevails in the southern 
hemisphere [43]. These results are validated by the dynamics of the historical river gauge records 
at Mbandaka over 1913–1955 and at Lisala over 1914–1955, both located on the Congo River, and 
at Ingende over 1933–1955, located on the Ruki River ([10], in Table 2). We notice a contrast 
between the very dry years 2004, 2005 and 2006, when low water levels lasted 8, 9 and 10 months, 
respectively, and the years 2003, 2007, 2008 and 2009, when the low-water periods were almost 
non-existent. The average seasonal variability over our study period is on average 1.8 m, except in 
2006 when it was 2.6 m, twice the amplitude observed in 2003. 

Figure 8b shows a comparison between the RWLA time series from the cluster “Congo-Tshuapa” 
and the RWLA time series recorded at the Brazzaville gauging station over the period 2003–2009. 
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These two RWLA time series are remarkably synchronized and have a correlation coefficient of 
0.96 (p-value < 0.001). However, the RWLA time series recorded at Brazzaville shows an 
amplitude 10% greater than the 95% confidence upper and lower bounds. Although not shown in 
the figure, the Brazzaville gauge also has a significant correlation coefficient (p-value < 0.001) 
with respect to the RWLA of Cluster “Central Congo” (0.9), Cluster “Lower Lualaba” (0.75), 
Cluster “Lukenie” (0.75) and Cluster “Kasai” (0.5). 

The RWLA time series of Cluster “Lukenie” has unimodal dynamics and is relatively 
homogeneous from 2003 to 2007. The dates of extreme water levels coincide with those of the 
Cluster “Congo-Tshuapa”: minimum in July and maximum in December and January. The seasonal 
variability over our study period averages 1.8 m. These results are similar to the historical water 
level time series records at Dekese over 1932–1955, located on the Lukenie River ([10], in Table 2). 

Cluster “Central Congo”: The RWLA stations are located on the Congo River downstream of 
its confluence with the Ubangi River and before its confluence with the Kasai River. This cluster is 
located in a hydrographically complex region and is influenced by three major rivers: the Ubangi, 
the Upper Congo and the Sangha [44]. The bimodal water level dynamics are very similar to those 
of Cluster “Congo-Tshuapa”: high water levels from November to December and a second  
high-water period from May to June. However, in Cluster “Central Congo”, low water levels occur 
in March and another more extreme low occurs in July, which is nearly the opposite of the Cluster 
“Congo-Tshuapa” dynamics. This finding can be explained by the strong influence of the Ubangi 
River (Cluster “Ubangi”), which is positive in the wet season (September) and negative in the dry 
season (March). Moreover, the RWLA seasonal variability is consistent with the dynamics at the 
Ouesso historical river gauge on the Sangha River (from the Global Runoff Data Center, [45]) and 
with the monthly maxima and minima recorded by the historical river gauge at Lukolela over 
1909–1955, located on the Congo River ([10], in Table 2). The low-water period is very long, 
lasting 7 to 8 months. The seasonal variability is, on average, 2.4 m over our study period, except 
in 2006, when it was 3.2 m. 

Cluster “Lower Lualaba”: We apply the same methodology as that applied to Cluster “Cuvette 
Centrale” to the 7 time series that make up this cluster, but we do not observe any significant 
difference in seasonal variability between the RWLA time series from the Kasai River and the 
RWLA time series located on the lower Lualaba River. The RWLA hydrograph for Cluster 8 has a 
unimodal distribution, except for the years 2004 and 2006, for which a second high-water period 
occurs in April. The maximum occurs in December-January and the minimum in August. These results 
are validated by the historical water level time series recorded at Kisangani from 1907–1955, 
located on the Upper Congo River ([10], in Table 2). We note that in this region, the RWLA 
seasonal variability is, on average, 2.5 m over our study period, except in 2006, when it was 3.5 m. 

We investigate the regionalization that these clusters suggest. Clusters “Upper Uele”, “Lower 
Uele” and “Ubangi” spatially match the northern region as described by Mahé [36]. The increasing 
amplitude from upstream to downstream is coherent with the gathering of water along the river 
system. Cluster “Central Lualaba” represents the eastern and southeastern parts of the basin and is 
very distinct from the other clusters. The southern and central western regions are not very well 
represented by the clusters considered in the present study. Cluster “Lower Lualaba” appears 
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intermediate between Cluster “Central Lualaba” and all other clusters. Clusters “Central Congo” 
and “Congo-Tshuapa” are bimodal, similar to each other, and separated from Clusters “Kasai” and 
“Lukenie”. Our data suggest that regionalization in the central part of the catchment follows more 
of an east-west gradient than a north-south one. 

6. Further Research 

The dataset used in the present study is currently being expanded. In terms of spatial extent, 
many other virtual stations are currently being computed from ENVISAT to sample more rivers, 
such as the Kwango and Kwilu Rivers in the southwestern part of the basin, the Dja River in the 
northwestern part of the basin and in the east, and the Lukuga and Luvua Rivers, which drain the 
Tanganika and Mweru Lakes, respectively, into the Congo River. In terms of temporal extent, the 
7-year ENVISAT time series will soon be extended with data from new satellites: Jason-2, 
launched in June 2008, and SARAL, launched in February 2013. Combining Jason-2 and SARAL 
observations for land water monitoring will take advantage of the 10-day temporal resolution of 
Jason-2 and the high geographical coverage of SARAL, which flies along the same orbit as 
ENVISAT. An example of a long series over the Congo River that can be obtained by combining 
ENVISAT, Jason-2 and SARAL data is shown in Figure 9.  

Figure 9. An extended time series of water levels obtained by combining successive 
ENVISAT track (blue), Jason-2 track (red) and SARAL track (black) measurements 
over the Congo River. The Jason-2 and SARAL measurement series are adjusted for 
biases relative to the ENVISAT series. This virtual station is located at [1°08 S; 
18°33 30 E].  

 

7. Conclusion 

This study was conducted using stage rather than discharge measurements, which makes it 
unusual within the field of hydrology. The utility of altimeter-derived information is illustrated by 
finding the spatial and temporal signatures of climate variability in water level variations within the 
Congo Basin. Studies of this type have been traditionally based on historical in situ gauging station 
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records, when and where available. However, climate and hydrological networks are sparse within 
the Congo Basin. Using satellite altimetry, we constructed a very large number of virtual stations 
across the Congo Basin to obtain information on the regional variability of surface water level 
anomalies in places where no in situ data are available over the period 2003–2009. This study 
shows that water levels can be measured throughout the basin, even in remote places, including the 
upstream, narrow parts of rivers. The study yielded interesting insights into the regionalization and 
characterization of the hydrological regime of the Congo Basin. Our analyses show an east-west 
gradient that has not previously been identified. The central western region is limited to a small 
region near the Congo swamp and represents the only bimodal hydrological regime of the basin. 
The Kasai region is similar to the central eastern region and is a progressive transition zone with 
the southeastern region. In conclusion, we have been validated the proposed regionalization 
scheme. Therefore considered reliable for estimating monthly water level variations in the Congo 
Basin. This result confirms the potential of satellite altimetry in monitoring spatio-temporal water 
level variations as a promising and unprecedented means for improved representation of the 
hydrologic characteristics in large ungauged river basins. 
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Estimation of Reservoir Discharges from Lake Nasser and 
Roseires Reservoir in the Nile Basin Using Satellite Altimetry 
and Imagery Data 

Eric Muala, Yasir A. Mohamed, Zheng Duan and Pieter van der Zaag 

Abstract: This paper presents the feasibility of estimating discharges from Roseires Reservoir 
(Sudan) for the period from 2002 to 2010 and Aswan High Dam/Lake Nasser (Egypt) for the 
periods 1999–2002 and 2005–2009 using satellite altimetry and imagery with limited in situ data. 
Discharges were computed using the water balance of the reservoirs. Rainfall and evaporation data 
were obtained from public domain data sources. In situ measurements of inflow and outflow (for 
validation) were obtained, as well. The other water balance components, such as the water level 
and surface area, for derivation of the change of storage volume were derived from satellite 
measurements. Water levels were obtained from Hydroweb for Roseires Reservoir and Hydroweb 
and Global Reservoir and Lake Monitor (GRLM) for Lake Nasser. Water surface areas were 
derived from Landsat TM/ETM+ images using the Normalized Difference Water Index (NDWI). 
The water volume variations were estimated by integrating the area-level relationship of each 
reservoir. For Roseires Reservoir, the water levels from Hydroweb agreed well with in situ water 
levels (RMSE = 0.92 m; R2 = 0.96). Good agreement with in situ measurements were also obtained 
for estimated water volume (RMSE = 23%; R2 = 0.94) and computed discharge (RMSE = 18%;  
R2 = 0.98). The accuracy of the computed discharge was considered acceptable for typical reservoir 
operation applications. For Lake Nasser, the altimetry water levels also agreed well with in situ 
levels, both for Hydroweb (RMSE = 0.72 m; R2 = 0.81) and GRLM (RMSE = 0.62 m; R2 = 0.96) 
data. Similar agreements were also observed for the estimated water volumes (RMSE = 10%–15%). 
However, the estimated discharge from satellite data agreed poorly with observed discharge, 
Hydroweb (RMSE = 70%; R2 = 0.09) and GRLM (RMSE = 139%; R2 = 0.36). The error could be 
attributed to the high sensitivity of discharge to errors in storage volume because of the immense 
reservoir compared to inflow/outflow series. It may also be related to unaccounted spills into the 
Toshka Depression, overestimation of water inflow and errors in open water evaporation. 
Therefore, altimetry water levels and satellite imagery data can be used as a source of information 
for monitoring the operation of Roseires Reservoir with a fairly low uncertainty, while the errors of 
Lake Nasser are too large to allow for the monitoring of its operation. 

Reprinted from Remote Sens. Cite as: Muala, E.; Mohamed, Y.A.; Duan, Z.; van der Zaag, P. 
Estimation of Reservoir Discharges from Lake Nasser and Roseires Reservoir in the Nile Basin 
Using Satellite Altimetry and Imagery Data. Remote Sens. 2014, 6, 7522-7545. 

1. Introduction 

Hydrological data are key information for water resources management. However, such data are 
frequently not readily available, particularly in transboundary river basins, either because of not 
being measured or limited accessibility to the data by the riparian states. Information of river flow, 
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reservoir storage and water use in a given riparian country is obviously of high importance for the 
whole basin. Such data is often not fully shared, particularly in water-scarce basins, e.g., the Nile, 
Indus, Tigris and Euphrates river basins [1]. The decline of hydrological networks in the world, 
particularly in developing countries, adds to the challenges of having accurate and representative 
hydrological data in river basins [2]. 

The Nile Basin covers an area of 3.3 million km2, is 6500 km long and is shared by 11 countries 
(Figure 1a). From south to north, the Nile traverses through varying climates, including the 
equatorial lakes, savannah, Sahara and, ultimately, the Mediterranean climate at its outlet. The basin 
is experiencing increasing water demands by the growing population, creating strong competition 
over the (fixed) water resource. Large dams have been constructed in the lower part of the basin 
(Egypt and Sudan), and new dams are planned or under construction in many locations, e.g., 
Bujagali Dam in Uganda, the Grand Ethiopia Renaissance Dam (GERD) in Ethiopia, and the Setit 
Dam in Sudan. Large dams change the water regime and availability not only locally, but at the 
basin scale, which then necessitates transboundary water management for optimal utilization of the 
resources. In fact, this has been the trigger for the formation of the Nile Basin Initiative (NBI), started 
in 1999, to support sustainable development and the equitable utilization of, and benefits from, the 
Nile water resources [3]. 

As at 2013, the riparian countries had not yet reached consensus on a data sharing protocol. The 
Comprehensive Framework Agreement (CFA) was signed by six out of the eleven Nile countries. 
The CFA intends to provide a legal and institutional framework for basin water resources 
management, including data sharing protocols [4]. The countries share only few hydrological data 
among themselves [5]. 

Satellite remote sensing is emerging as a potential technique to support hydrological monitoring 
and, hence, inform water resources management in river basins [1,6]. Satellite altimetry, a remote 
sensing technique, has been successfully used to derive water level data in lakes, reservoirs, rivers, 
floodplains and wetlands, providing data for more than 15 years [7]. 

The water level data derived from satellite altimetry have been combined with in situ 
measurements to estimate water storage in lakes and reservoirs, with successful applications in 
different parts of the world. The water volume variation of Lake Dongting in China was estimated 
using a relation developed between water level from satellite altimetry and in situ water storage [8]. 
Medina et al. [9] also estimated the volume variation of Lake Izabal in Guatemala from relations 
utilizing in situ measurements, satellite altimetry and imagery data. Duan and Bastiaanssen [10] 
proposed a method using only satellite altimetry and imagery data to estimate the volume 
variations of Lake Tana (Ethiopia) and Lake Mead (USA). This latter method can be used in the 
absence of in situ data. This method has been used in this study to estimate volume variation for 
Roseires Reservoir and Lake Nasser. 
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Figure 1. Locations of (a) Nile Basin; (b) Lake Nasser, Egypt; (c) Roseires Reservoir, 
Sudan and the gauging stations. 

  

Altimetry data have also been used to estimate river discharges, e.g., for the Ob River [11], 
Chari/Ouham confluence near Lake Chad Basin [12], Amazon [13] and Ganga-Brahmaputra  
rivers [14]. In these studies, the river discharges were derived from rating curves developed from 
altimetry water levels and in situ discharge measurements. In the absence of in situ measurements, 
Leon et al. [15] utilized altimeter water level in a flow routing model (Muskingum–Cunge) to 
estimate the discharge of the upper Negro River in the Amazon basin (Brazil). The literature shows 
that discharge of rivers can be derived from rating curves. However, for lakes, the water  
level-discharge relationship does not significantly exist or, even if it exists, it may not be available 
for sharing. Swenson and Wahr [16] estimated the various components of Lake Victoria in East 
Africa using water balance. The lake’s level/storage, evaporation and precipitation were derived 
from satellite (e.g., altimetry, TRMM and GRACE) and the water inflow from models. The study 
presented here also uses the water balance, but uses satellite imagery and altimetry, public data on 
rainfall and evaporation and limited in situ data to estimate the discharge of a lake/reservoir. 
Therefore, this research seeks to add to the methods of estimating lake/reservoir discharges. 

In summary, the literature shows many applications of using satellite altimetry and imagery data  
in combination with in situ measurements to derive hydrological information for water resources 
management. The degree of success is case specific, depending on the frequency and quality of 
satellite data in relation to the size and shape of the given water body. 

This study aims at testing satellite data (altimetry and imagery) combined with limited in situ 
measurements for the operation of two large reservoirs in the Nile Basin: Roseires Reservoir and 
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Aswan High Dam/Lake Nasser (Figure 1). The key question was: How accurate can satellite 
altimetry and imagery data estimate changes in storage volume and, combined with in situ 
measurements of reservoir inflow, reservoir discharges? 

The paper is organized as follows: Section 2 gives a brief description of the two study sites. 
Section 3 presents all of the data used and their processing for the two reservoirs (altimetry, 
imagery and in situ measurements). The methods used for water balance and data validation are 
discussed in Section 4, and Section 5 presents the results and discussion. Finally, key conclusions 
and lessons learned are reported in Section 6. 

2. Description of the Study Areas 

Roseires Reservoir (Sudan) and Lake Nasser (Egypt) serve crucial functions to the population of 
both countries (Figure 1). They have been selected for this study because: (i) altimetry data have 
not been used yet to derive reservoir discharge; (ii) they are located in a transboundary river basin 
(Nile), where data exchange among riparian countries is limited, even though Sudan and Egypt 
have an agreement on data sharing (1959 agreement); and (iii) altimetry and satellite imagery data, 
as well as in situ data on inflows and outflows (for validation) were available for both sites. 

2.1. Roseires Reservoir 

Roseires Reservoir is located on the Blue Nile at Damazin, 550 km southeast of Sudan’s capital, 
Khartoum, and 110 km from the Ethiopia-Sudan border (Figure 1c). The reservoir is located at the 
southeastern part of Sudan, whose topography is made up of steppes and low mountains. The 
altitude ranges from about 350 m at Khartoum to 490 m above mean sea level (AMSL) at the 
Ethiopian-Sudan border. The reservoir was constructed in 1966 for irrigation (Gezira Scheme) and 
hydropower generation (280 MW). The physical characteristics of Roseires Reservoir are presented 
in Table 1. The reservoir capacity has decreased by 40% due to sedimentation [17]. However, in 
January 2013, works were completed that heightened the dam wall by 10 m, increasing the 
reservoir’s storage capacity to 7.4 billion m3 [18]. 

Table 1. Characteristics of the two reservoirs studied: Roseires Reservoir and Lake Nasser. 

Characteristics Roseires Reservoir (Sudan) Lake Nasser (Egypt) 
Max length (km) 80 500 
Max width (km) 9 12 
Maximum depth (m) 68 110 
Mean depth (m) 50 70 
Reservoir area (km2) 290 6000 
Water volume (km3) 3 162 
Average annual inflow (km3/y) 49 70 
Average residence time (y) 0.06 2.30 
Major water uses Irrigation, hydropower Irrigation, hydropower 
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The temperature within the environs of the reservoir ranges from 27 to 46 °C. Rainfall normally 
occurs between June and October, with an annual average of 0.7 m/y (Damazin station). The 
annual average water inflow at El-deim is 49 km3/y. 

The operation of Roseires Reservoir distinguishes four stages. During the first stage (rising 
flood) from July to August, the reservoir level is drawn to a minimum level of 470 m (AMSL). In the 
second stage, between 1 and 26 September, the reservoir is filled, depending on the water inflow 
from El-deim. During the third state, the full retention level is maintained, while the fourth stage 
marks the start of the emptying of the reservoir [17]. Now that the dam wall has been heightened, 
filling is expected to start earlier each year. 

2.2. Lake Nasser 

Lake Nasser is one of the greatest man-made lakes in the world, formed after the creation of the 
Aswan High Dam (AHD) in 1971 on the Nile River (Figure 1b). The lake is located in a desert 
region. The Arabian/Eastern Desert is located east of the Nile, while the low-lying sand dunes and 
depressions are found in the Western Desert. The dam was built to provide hydropower (2100 
MW) and a steady water supply for irrigation in Egypt (55.5 km3/y). The lake has a length of about 
500 km, 330 km in Egypt and 170 km in Sudan. Table 1 gives further characteristics of Lake Nasser. 

The lake is vital to Egypt, as it stores and regulates Nile water, being the main source of 
freshwater for about 85% of its population. The lake is located in a very hot, dry climate with an 
annual evaporation ranging from 2.1 to 2.6 m/y [19]. The annual rainfall over the lake is  
negligible [20]. 

The operation rules of Nasser reservoir aim at ensuring adequate water supply and the safety of 
the Aswan High Dam. At the beginning of the water year (1 August), the water level is kept at  
175 m AMSL to fulfil high and low flow requirement. When the water level upstream reaches an 
elevation between 178 m and 183 m, excess water is directed to the Toshka Depression and, if 
necessary, by means of the emergency spillways on the western bank of the Nile [21]. The 
maximum retention at 180 m AMSL is obtained in November and, subsequently, the reservoir 
levels decrease from January to July as water is released. 

3. Input Datasets 

3.1. In Situ Data for Roseires Reservoir 

In situ daily water levels (h), water inflows (Qin), outflows (Qout) and volumes (V) for Roseires 
Reservoir for the period 2002–2010 were obtained from the Ministry of Water Resources, Sudan.  
The in situ water level is referenced to Alexandria Datum (i.e., above mean sea level). The level is 
taken from graduations on the dam wall. The inflow data is measured at El-deim station close to 
the Sudan-Ethiopia border. The (observed) outflow from the reservoir is monitored from a short 
distance downstream of the dam. The bathymetry survey of 2005 with reservoir levels and water 
volumes were used to derive the volume-level relationship, as given by Equation (1). Note that 
Equations (1) and (2) below (Section 5.2) have very sensitive decimal places and must be used as 
such. The bathymetric table shows that the minimum level is 467.00 m, with a corresponding 
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volume of 13.70 m3 million, while the maximum level was 481.00 m, with a volume of 1934.73 m3 
million. The data nicely spread between the minimum and maximum level every 1.00 m. The 
equation gave an excellent fit (R2 = 0.9995). 

V = 0.16565h3  223.30002h2 + 100,166.89815h – 14,949,451.43946 (1)

where:  
V = Storage volume in Mm3, 
h = observed reservoir level in m AMSL. 

3.2. In Situ Data for Lake Nasser 

Ten-day mean measurements for in situ water levels (h), water inflows (Qin) and outflows (Qout) 
for the periods 1999–2002 and 2005–2009 and daily in situ water levels and volumes for the period  
2007–2009 were obtained from the Ministry of Water Resources and Irrigation (MoWR), Egypt.  
In situ data were not received for the period 2003–2004. The in situ data are with respect to 
Alexandria Datum (i.e., AMSL). To allow for daily interpolation, the 10-day mean measurements 
were assumed to occur on Days 5, 15 and 25 of each month, and linear interpolation was performed 
for the intermediate days. This interpolation may introduce some uncertainty in the validation 
results, but this is expected to be small. The water inflow is recorded at Dongola station in Sudan 
and is computed by a rating curve equation. 

The daily in situ water levels and volumes for the period 2007–2009 were used to derive the 
volume-level relationship for the lake. The relation was further used to convert in situ water levels 
to in situ volumes for the whole period of 1992–2002 and 2005–2009. The converted in situ 
volumes were used to validate the volumes from satellite measurements. The derived relation is 
given in Equation (2). This is based on 731 data points, with a minimum level of 173.30 m 
(volume: 112,600 million m3) and maximum level of 180.11 m (volume: 150,193 million m3). The 
data gave an excellent fit (R2 = 1.0) 

V = 5.56806h3 – 2,858.00945h2 + 493,925.51557h + 28,630,490.83329 (2)

3.3. Altimetry Water Level Datasets 

Altimetry water levels from the Hydroweb and Global Reservoir and Lake Monitoring (GRLM) 
databases were used in this study. These databases were chosen because of the temporal resolution, 
level of processing and data availability for the two study areas. Readers are referred to Duan  
and Bastiaanssen [10] for a discussion of all four satellite altimetry water level databases for lakes  
and reservoirs. 

Hydroweb is prepared by LEGOS/GOHS (Laboratoire d’Études en Géophysique et Océanographie 
Spatiale/Equipe Geodesie, Oceanograhie et Hydrologie Spatiale) in Toulouse, France. The altimetry 
data were derived from Topex/Poseidon, ERS-1 and 2, Envisat, Jason-1 and GFO satellites. The data 
are average monthly water level time series [22]. The reference of the water level is the GRACE 
Gravity Model 02 (GGM02) geoid. The procedure for water level processing in Hydroweb is 
described in detail by Cretaux et al. [23]. 
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The Global Reservoir and Lake Monitor data (GRLM) are prepared by the United States 
Department of Agriculture’s Foreign Agricultural Service (USDA-FAS) in collaboration with 
NASA and the University of Maryland. The database uses data from Topex/Poseidon (T/P), Jason-1, 
Jason-2 and Envisat, and the data are at time interval of 10-days [24]. The reference of water levels 
from GRLM is with respect to the mean 9-year T/P water level. Therefore, they are expressed in 
relative water levels. The procedure for water level processing in GRLM can be found in [25]. The 
water levels of Lake Nasser are available in both databases, while water levels of Roseires can be 
found only in Hydroweb. 

3.4. Landsat TM/ETM+ Imagery Data 

Landsat TM/ETM+ imagery data were used to extract the water surface areas of the two 
reservoirs: Roseires and Lake Nasser. TM/ETM+ imagery data were chosen because of their  
long-term data availability (since 1984), free access and high spatial resolution (30 m). One scene 
of a Landsat image can entirely cover Roseires Reservoir, while three scenes are needed to 
completely cover Lake Nasser. The acquisition dates of images for the two reservoirs are given in 
Section 5. The data were downloaded freely [26]. 

Two problems were encountered when using Landsat images: cloud cover and domain, and 
were worked around as discussed in this section. Landsat images with dates coinciding with that of 
altimetry water level measurements were chosen to extract the reservoir’s water extent. The 
selection of coinciding dates was not always possible, because of high cloud cover and different 
revisit periods of the Landsat and altimeter satellites. In such cases, the closest dates were selected 
since the climate variations in some month(s) would not change much. In Hydroweb, water levels 
in a close or the same month and year with images were chosen, while in the GRLM database, 
specific days were chosen. Some of these dates had a big difference (i.e., 10 to 60 days) with respect 
to the date of altimetry water levels . Undoubtedly, this introduces an error in the estimation of the 
reservoir area. In the acquisition of the images of Roseires, it was observed that the boundary of 
Roseires Reservoir overlapped with the edge of some image scenes, reducing the availability of one 
complete scene. This situation also limited the acquisition of close or coinciding dates to derive the 
area-level relationship. The merging of three Landsat images to cover Lake Nasser with different 
acquisition dates also introduces errors in the delineation of the lake area. 

The Landsat-7 satellite has had a problem with its Scan Line Corrector (SLC) since 31 May 
2003, resulting in SLC-off ETM+. This failure has led to about a 22% data loss due to the 
increased scan gap [27]. Therefore, gap filling was done for images after May 2003, using Local 
Linear Histogram Matching (LLHM). The LLHM uses a Landsat TM or ETM+ SLC-on image to 
fill the SLC-off image [28]. The images chosen for the gap filling were cloud-free images and had 
comparable seasonal conditions. The Landsat-7 image gap filling was done for both Roseires 
Reservoir and Lake Nasser, since some of the acquisition dates were after May 2003.  
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3.5. Rainfall and Evaporation 

Long-term mean values of monthly rainfall data for Roseires Reservoir and Lake Nasser were 
obtained from the International Water Management Institute (IWMI) On-line Climate Summary 
Service Model [29]. Generally, the IWMI On-line Service Model data is based on data obtained 
from weather stations around the world for the period 1961–1990. Using mean values of rainfall 
and evaporation is expected to generate negligible error in the water balance of the two reservoirs. 
Rainfall volume on Roseires Reservoir is very small, because the reservoir area is at a minimum 
during the rainy season, while on Lake Nasser, the rainfall rate is negligible. Open water evaporations 
from the two reservoirs were calculated using the Penman [30] formula. All parameters in the 
Penman formula, i.e., temperature, relative humidity, wind speed and relative sunshine duration, were 
obtained from long-term mean monthly values of the IWMI online climate summary service model. 
This is expected to cause a small error in evaporation volume, which is at least much smaller than the 
uncertainty of the reservoir area. 

4. Methods 

4.1. Altimetry Water Level Measurements 

As given in Section 3.2, altimetry water levels for the two reservoirs were acquired from two 
databases (Hydroweb and GRLM). The mean difference (constant shift) between the in situ and 
altimetry water levels was computed and then simply added to altimetry water levels [10,31]. This 
ensures the attainment of a common datum, which allows the comparison of the two data series. 
For validation, the commonly used indicators, i.e., the coefficient of determination (R2) and the root 
mean square error (RMSE), were computed. 

Alternatively, Global Navigation Satellite System (GNSS) data provide a datum shift for 
altimetry data for certain specific locations. However, there were no network stations of GNSS for 
our studies of the two reservoirs, and therefore, these were not used [32].  

4.2. Delineation of Reservoir Surface Area 

The extents (surface areas) of the two reservoirs were delineated from Landsat satellite images 
using the Normalized Difference Water Index (NDWI) [33] as given by Equation (3): 

 (3)

where GREEN and NIR are the green and near-infrared red bands, respectively. The water features 
have positive values due to their higher reflectance of the green band compared to the NIR band, 
while vegetation and soil features have zero or negative values because of their higher reflectance 
of the NIR band compared to the green band. The Modified Noramlized Difference Water Index 
(MNDWI), which replaces the NIR band in Equation (3) with the mid-infrared red (MIR) band, has 
been reported to perform better than NDWI [34]. However, we found that the MIR band (Band 5) 
for both study areas had poor qualities; the boundaries of the image scenes shift when the MNDWI 
is applied. Therefore, NDWI was used to delineate the reservoir areas in this study. Band 2 of 
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Landsat TM/ETM+ (green), and Band 4 (NIR) were used in Equation (3). With the aid of visual 
inspection and NDWI ranging from 0.01 to 1, water bodies of both study areas were extracted. The 
range was based on the general observation of detecting water bodies within a trial and error range 
from 0 to a positive value. The reservoir surface area was then calculated as the sum of the areas of the 
pixels identified as water bodies. 

4.3. Storage Volume Estimation 

A surface area-water level relation (based on satellite measurements) was integrated to obtain 
volume-level relations for each reservoir. First, the lowest water level (hmin) of the altimetry time 
series data was identified. The lowest water level was then subtracted from all water levels (h) 
obtained from each satellite altimetry data (i.e., h  hmin). The (h  hmin) can also be known as the 
water depth d above hmin [10]. It is assumed that the storage volume is zero at hmin, i.e., when d = 0, 
V = 0, but A  0, where A is surface area of the reservoir/lake. However, in reality, there is a 
storage volume in the reservoir at d, at least equal or larger than the dead storage. This is to allow 
water volume computations independent of the dead storage. For comparison, the in situ volumes 
have also been converted to volumes above the lowest water level (hmin). The conversion was done 
by subtracting the in situ volume for the same date that the lowest water level occurred in the 
satellite altimetry products. 

Therefore, time series of two variables (surface area and water level) were prepared. The surface 
area (A) of a reservoir/lake delineated from the TM/ETM+ images for a given date is associated  
with altimetry water level measurements (h), converted to (h  hmin) of the same (or closest) date.  
A second-polynomial function (A = f(d) = ad2+ bd + c) was obtained by correlating the surface area 
(A) in Mm2 and water depth (d) in m, a, b, c being constants determined by regression analysis. 
The A-d relation was then integrated to obtain the volume-level relation (V = f (d) = ad3/3 + bd2/2 + 
cd + e); where V is the water volume above hmin. The A-d relation was integrated with the condition 
that the water volume (V) is equal to zero when water depth (d) is zero. The constants a, b, and c 
are the same values as in the A-d relation, and e is solved as zero (0) given the condition V = 0 
when d = 0. 

4.4. Water Balance of Reservoirs 

The discharge from a reservoir/lake has been computed from the water balance equation of 
Equation (4), assuming negligible groundwater interactions: 

Qin + A (P  E)  dS/dt = Qout (4)

where:  
Qin = inflow in Mm3/day 
Qout = reservoir discharge in Mm3/day 
P and E = precipitation and open water evaporation in m/day, respectively 
dS/dt = change in storage volume with time in Mm3/day 
A = the reservoir’s water surface area in Mm2 (=km2). 
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The inflow, Qin, was obtained from in situ measurements. The reservoir discharge, Qout, was 
computed based on altimetry water level measurements, Area-level and volume-level relations  
(i.e., dS/dt) were derived from Landsat and altimetry data. Qout is computed on decadal time steps  
(10-day) for GRLM and monthly for Hydroweb. The computed discharges Qout of Equation (4)  
were then validated against observed discharges. The objective here is to assess the accuracy of the 
discharge computed from a reservoir if it is based on satellite data of water levels and storage volume. 

5. Results and Discussion 

5.1. Results for Roseires Reservoir 

5.1.1. Altimetry Water Level Measurements 

The time-series of monthly water levels from Hydroweb and in situ measurements for Roseires 
Reservoir is shown in Figure 2. The Hydroweb water levels have been shifted vertically to the 
datum of the in situ measurements by adding a constant shift [31]. The shift of 1.54 m is the mean 
difference between the two data series for the period of nine years from 2002 to 2010 (Table 2). 
Figure 2 shows that water levels from Hydroweb agreed well with the in situ water level 
measurements (R2 = 0.96), in particular for high reservoir levels. However, water levels from 
Hydroweb overestimate reservoir levels during the flood season (when water levels are kept low), 
as was the case in 2004 and 2005, but not during the 2006 flood. Note that usually, the reservoir is 
at the maximum level by the end/beginning of the year and at minimum level during the flood 
season, June, July and August. Because of the very high flow during the flood season of 2006, 
which exceeded the gate capacity of Roseires Dam, the reservoir level rose above minimum levels, 
the so-called compulsory storage [35]. The under estimation at high water levels and over 
estimation at low levels could be attributed to the adjustment from the constant shift. 

Table 2. Statistics of altimetry-derived water levels for Roseires Reservoir and  
Lake Nasser. 

Study Areas Dataset Period No. * Interval R2 
RMSE 

(m) 

Shift 
Constant 

(m) 

Mean Shifted 
Water Level (m) 

Roseires Hydroweb 2002–2010 63 monthly 0.96 0.92 1.54 479.75 
Lake Nasser Hydroweb 1999–2002 89 monthly 0.81 0.72 0.12 176.89 

2005–2009 
GRLM 1999–2002 215 10-day 0.94 0.62 179.43 177.12 

2005–2009 
* Refers to the number of data points used. 
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Figure 2. Time series of altimetry water levels from Hydroweb (blue), ranging from  
473 m to 485 m, compared to in situ measurements (red), ranging from 470 m to 484 
m, for Roseires Reservoir during the period 2002–2010. The water levels from 
Hydroweb have been shifted vertically by 1.54 m to correct for the datum. The error 
bars in blue represent the standard deviation of altimetry water levels from the 
Hydroweb database. 

 

The RMSE of Hydroweb water levels against in situ water levels for Roseires was 0.92 m, 
which is about 7% of the seasonal variation (~14 m), and R2 is 0.96, showing good agreement with 
in situ measurements. The literature reports a wide range of RMSE for different lakes and 
reservoirs worldwide. In general, the RMSE is small for large lakes, e.g., 3 to 7 cm for Lake 
Victoria, East Africa [31], but increases to several decimeters for smaller lakes, e.g., 26 cm for 
Lake Woods and 105 cm for Lake Powel [23]. The accuracy of altimetry water levels has been 
attributed to the size of the target water body, the surrounding topography and the roughness of the 
surface [23]. With larger rivers, RMSE ranges from 10 to 20 cm, e.g., Amazon River [36], and 
increases over narrower rivers and/or in the presence of vegetation [6]. The satellite laser altimetry, 
Ice, Cloud and Elevation Satellite (ICESat) derived water levels for Roseires Reservoir reveal an 
RMSE of 17 cm [37]. The improved accuracy of water levels from ICESat as compared to 
Hydroweb could be due to the smaller footprint of satellite laser altimeter (ICESat) than satellite 
radar altimeter (Hydroweb). 

5.1.2. Reservoir Area and Volume 

Nine pairs of coincident water levels from Hydroweb and Landsat TM/ETM+ imagery data 
were selected to determine surface area-level and further volume-level relations for Roseires  
(Table 3). Based on these nine pairs, the area-level relationship for Roseires was derived by 
regression analysis, as shown in Figure 3. The scatter could be attributed to two reasons:  
(i) different acquisition dates of altimetry data and satellite images, in particular during transition 
periods (filling or emptying of the reservoir); and (ii) the inherent uncertainties of both altimetry 
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measurements (discussed in Section 5.1.1) and the area delineation from the NDWI images. 
However, a representative A-d relation could be derived (R2 = 0.87). The volume-level relation was 
obtained by the integration of Equation (5). The resulting function, as shown in Equation (6), was 
used to convert water levels from Hydroweb to calculated volumes for Roseires Reservoir. 

A = 0.34d2  5.04d + 147.30 (5)

V = 0.11d3  2.52d2 + 147.30d (6)

where:  
A = area of reservoir derived from Landsat imagery (km2). 
d = water depth (m). 
V = volume in Mm3. 

Table 3. Water depth with corresponding imagery data and delineated surface area for 
Roseires Reservoir. 

No. Altimetry Water Levels Landsat TM/ETM+ Images 
Date Original (m) d (m) a Date Sensor Area (km2) 

1 July 2009 473.09 0.02 14 September 2009 ETM+ 148.10 
2 August 2008 474.59 1.52 27 September 2008 ETM+ 162.00 
3 March 2010 477.93 4.87 9 March 2010 ETM+ 167.90 
4 April 2009 479.48 6.41 23 April 2009 ETM+ 175.70 
5 March 2009 480.80 7.74 22 March 2009 ETM+ 211.90 
6 February 2010 481.48 8.41 12 January 2010 TM 239.00 
7 March 2008 482.52 9.45 4 April 2008 ETM+ 217.30 
8 January 2010 483.68 10.61 4 January 2010 ETM+ 252.20 
9 November 2007 485.24 12.17 28 November 2007 ETM+ 246.60 

“Original” is the original value obtained from Hydroweb. a The water depth referred to above is lowest 
altimetry water level, hmin. 

Figure 3. The area (A) and water depth (d) relationship of Roseires Reservoir from 
paired altimetry water levels and the area derived from Landsat images. 
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The monthly series of calculated from volume satellite data and calculated volume from in situ 
data for Roseires Reservoir from 2002 to 2010 are shown in Figure 4. The calculated volumes from 
satellite data were obtained by applying Equation (6) to altimetry water level data. The calculated 
volumes from satellite data were relative to the reference volume, which corresponds to the lowest 
water level (hmin) from Hydroweb. The calculated volumes from in situ data were derived by 
subtracting the in situ water volume that corresponds to the lowest altimetry water level from all  
in situ water volumes obtained from Equation (1). As can be seen from Figure 4, the operation 
pattern could be reproduced by satellite-derived data. The RMSE was 355 Mm3 (i.e., 23% of the 
mean volume of 1529 Mm3), while R2 was 0.94. The calculated volume based on satellite data 
consistently underestimated water volumes when the reservoir was at a maximum and 
overestimated at minimum levels. At low water levels, all of the calculated volumes (in situ) had 
negative values, except for August 2006, when the lowest water level occurred. August 2006, was 
used as the reference water level for the in situ water volume, since the date corresponds to the 
lowest water level (hmin) from Hydroweb. However, for other dates, even lower in situ water levels 
were measured. This reference water level value is thus greater than the other low water levels, 
hence the existence of negative volumes at low levels. These negative volumes do not affect our 
discharge estimation, since this is calculated from water volume differences between two time 
periods rather than the absolute values of water volumes for a specific time (see Section 5.1.3 on 
discharge estimation). 

Figure 4. Monthly series of calculated volume (in situ data and satellite data) above the 
reference level for Roseires Reservoir between 2002 and 2010. The in situ volume (red) 
was derived from the V-h relationship obtained from a bathymetry survey of 2005,  
(Equation (1)), but relative to the reference volume. The satellite volume (blue) is 
derived from the V-d relationship using satellite measurements, i.e., Landsat imagery 
and altimetry water level (Equation (6)). 
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5.1.3. Reservoir Discharge 

For validation, observed discharges from Roseires Reservoir based on a rating curve were 
compared with those computed by the water balance (wb) equation (Equation (4)). First, Qout was 
computed using all in situ measurements (Qin, P, E, A, dS/dt), labelled as Q (wb in situ data) in 
Figure 5. Here, dS/dt is based on in situ water level measurements, and the volume-level- relation is 
derived from bathymetric survey. Subsequently, Qout was computed using satellite (sat.) data of A 
and dS/dt and in situ data of Qin, P, E, labelled as Q (wb sat. data-Hydroweb). Here, dS/dt is based 
on altimetry water level measurements and the volume-level relation from satellite data with 
respect to the time step of the altimetry database (10-day or monthly). As shown, the three 
differently computed outflows are in excellent agreement with each other, e.g., Q (wb sat. data-
Hydroweb) correlates well with Q (observed), R2 = 0.98. The RMSE between the two datasets is 
671 Mm3/month, corresponding to 18% of the observed mean discharge. This can be considered an 
acceptable accuracy, given that the uncertainty of discharge measurement is between 5% and 10%, 
while errors up to 15% to 20% were reported for large rivers [14]. Discharge measurement errors of 
4%–17% were reported for the Amazon River [13], and 17% for the Ob’ river [11]. 

Figure 5. Roseires Reservoir discharges between 2002 and 2010. Red is Q (observed) 
based on rating curve; green is Q (wb in situ data) based on in situ data; blue is Q (wb 
sat. data-Hydroweb) based on satellite data. 

 

To understand the errors introduced by satellite versus other sources of errors, the two observed 
discharges were compared, Q (observed) from the rating curve and Q (wb in situ data). The mean 
difference between the two discharges resulted in 16%. This shows that the error of the discharge 
using satellite data relative to the discharge (all in situ data) can be in the order of 2%, assuming 
linear error propagation. 
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5.2. Results of Lake Nasser 

5.2.1. Altimetry Water Level Measurements 

The water level data for Lake Nasser from Hydroweb (monthly) and GRLM (10-day) covered 
the periods 1999 to 2002 and 2005 to 2009. To attain a common datum for comparison, the water 
levels of Hydroweb and GRLM were shifted vertically with 0.12 m and 179.43 m, respectively 
(Table 2). The shifted values varied largely in magnitude, because the Hydroweb products were 
absolute water levels, while the GRLM products were water level variations referenced to the mean 
nine-year T/P water level. Figure 6 shows the time-series of in situ measurements, Hydroweb and 
the GRLM. It compares the in situ levels and shifted altimetry water levels, and the gap is a result 
of the lack of in situ data from 2003 to 2005. In the absence of in situ data for this period,  
Section 5.2.2 shows the possibility of estimating water volume from Hydroweb water levels to 
cover this gap. 

Figure 6. Time series of altimetry water levels from Hydroweb (blue) and GRLM 
(green) compared to in situ measurements (red) for Lake Nasser during the periods 
1999–2002 and 2005–2009. The error bars in blue and green represent the standard 
deviation of water levels for Hydroweb and GRLM, respectively. 

 

In Figure 6, both altimetry water levels are in good agreement in phase and amplitude, 
especially at high reservoir levels. It could be observed that the Lake Nasser levels showed a clear 
decline between 2002 and 2007. This could be attributed to the drought in East Africa affecting the 
major sources of the Nile River, i.e., the White Nile from Lake Victoria and the Blue Nile from the 
Ethiopian Plateau [16]. The huge size of Lake Nasser reservoir (two-times annual flows) allows a 
long memory of response to inflow variability. Inflow was declining until 2005, but higher flows 
entered the lake from 2006 onward. 
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The RMSE of monthly data from Hydroweb against in situ water levels was 0.72 m, which is 
about 6% of the annual fluctuation (~13 m), while R2 is 0.81 (Table 2). Similarly, the RMSE of 
altimetry data from GRLM against in situ water levels was 1.22 m, and R2 is 0.82. In general, the 
raw GRLM data has outliers, which were identified by comparison with in situ data. The mean 
square errors (MSE) between the two datasets exceeding 3 m were considered major outliers and 
were removed. Consequently, 20 outliers were taken out of the 235 data points of GRLM. The 
RMSE after the removal was 0.62 m, which is about 5% of the annual fluctuation, and the R2 was 
0.94 (Table 2). The lower accuracy for Lake Nasser compared to Roseires could be attributed to the 
narrow and long shape of the former, which allows only small areas to be covered in the footprint 
of satellite altimetry, leading to the altimetry product being contaminated by land [25]. Land 
contamination for inland water is normally removed through customized processing of altimetry 
data, which is beyond the scope of this current study. Details on the removal of land 
contaminations have been discussed by developers of GRLM [25] and Hydroweb [23]. 
Furthermore, the difference in the places where the in situ gauge and altimetry satellites measure 
water levels would add some uncertainty. The single point-based in situ gauge station cannot 
reflect the spatial variation of water levels. The satellite altimetry measures along the track, which 
has a certain distance from the in situ gauge station. 

5.2.2. Reservoir Area and Volume 

Table 4 presents the selection of Landsat images matched with altimetry water level dates and 
the derived surface areas for Lake Nasser. Six monthly water levels from Hydroweb and areas 
derived from Landsat Images were paired to estimate the A-d relationship. Similarly, eight GRLM 
water levels and areas were paired to determine the A-d. Due to the narrow and long shape of Lake 
Nasser, three scenes were merged to obtain one complete scene for the lake. Two of the image 
scenes have similar dates, and each scene has its specific water level and extent. The acquisition 
dates for two of the scenes, Path 175 Row 44 and Path 175 Row 45, are the same; hence only one 
column is maintained as for both in Table 4. To reduce the error of water extent (area) arising from 
scene merging, the maximum allowed reservoir water level difference between the selected images 
scenes was assumed to be 0.6 m. Landsat images spanning from 1999 to 2002 were mostly used for 
area estimation, as they were free of image gaps, i.e., easier to process compared to the SLC  
gap-filling procedure. Few Landsat SLC-off images were used, since the gap filling of three  
SLC-off image scenes using SLC-on images for Lake Nasser was time consuming. 

The Equations (7), (8), (9) and (10) represent the A-d and V-d relationships derived from 
Hydroweb and GRLM. Equation (7) and (9) were integrated to obtain Equation (8) and (10) 
respectively. The lowest water levels (as the reference for water volume estimation) for Hydroweb 
and GRLM were different; therefore, their derived equations are database specific. Equations (8) 
and (10) were used to convert the water levels to water volumes. 

For Hydroweb, the A-d relation is given by Equation (7), represented by the blue curve in Figure 
7. The R2 was 0.96. 

A = 2.49d2 + 141.52d + 3824.11 (7)
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V = 0.83d3 + 70.76d2 + 3824.11d (8)

For GRLM, the A-d relation with R2 of 0.99 is given by Equation (9), represented by the red 
curve in Figure 7. 

A = 5.43d2 + 99.06d + 3836.13 (9)

V = 1.81d3 + 49.53d2 + 3836.13d (10)

Table 4. Water depth and the corresponding estimated surface areas for Lake Nasser. 

Water Level 
Sources 

No. 
Altimetry Water Level Landsat TM/ETM+ Images 

Date 
Original 

(m) 
d (m) a Path 174 Row 44 Path 175 Row 45 Area (km2)

Hydroweb 

1 July 2006 169.24 0.00 9 July 2006 16 July 2006 3846.08 
2 April 2006 172.94 3.70 20 April 2006 27 April 2006 4214.58 
3 July 2002 174.88 5.64 12 June 2002 21 July 2002 4881.45 
4 June 2002 176.07 6.84 12 June 2002 11 June 2002 5012.57 
5 August 1999 176.31 7.07 7 August 1999 6 August 1999 4919.08 
6 December 2002 177.40 8.16 December 2002 28 December 2002 5102.32 
7 March 2002 178.71 9.47 8 March 2002 15 March 2002 5476.42 
8 September 2000 179.35 10.11 10 September 2000 9 September 2000 5274.76 
9 November 1999 181.41 12.17 3 November 1999 10 November 1999 5998.30 

GRLM 

1 12 July 2006 10.76 0.00 9 July 2006 16 July 2006 3846.08 
2 4 May 2006 6.96 3.80 20 April 2006 27 April 2006 4214.58 
3 26 July 2002 4.17 6.59 12 June 2002 21 July 2002 4881.45 
4 10 August 1999 2.85 7.91 7 August 1999 6 August 1999 4919.08 
5 16 June 2002 2.69 8.07 12 June 2002 11 June 2002 5012.57 
6 16 April 2001 1.52 9.24 8 May 2001 13 April 2001 5177.57 
7 10 September 2000 0.94 9.82 10 September 2000 9 September 2000 5274.76 
8 19 March 2002 0.21 10.55 24 March 2002 15 March 2002 5476.42 
9 5 February 2001 0.11 10.87 5 March 2001 8 February 2001 5552.88 
10 17 November 1999 1.92 12.68 3 November 1999 10 November 1999 5998.30 

“Original” is the original value obtained from the satellite altimetry products. a The water depth refers to 
above the lowest water level (hmin). 

Figure 8 shows time-series of calculated volume from in situ data (Equation (2)) and calculated 
volumes from Hydroweb data (Equation (8)) and GRLM data (Equation (10)) for Lake Nasser 
during the periods 1999 to 2002 and 2005 to 2007. The calculated volumes from in situ data were 
relative to the reference volume, which corresponds to the lowest water level (hmin) from Hydroweb 
and GRLM. The operation pattern of Lake Nasser has been agreeably reproduced, although 
Hydroweb and GRLM underestimated the volume at minimum and maximum reservoir levels. The 
RMSE from Hydroweb data was 5720 Mm3 (i.e., 15% of the mean volume of 38,847 Mm3), while 
R2 was 0.93. The RMSE based on GRLM data was 3858 Mm3 (i.e., 10% of the mean volume of 
39,377 Mm3), while R2 was 0.94. GRLM is slightly better than Hydroweb in terms of smaller 
relative RMSE for Lake Nasser. 



478 
 

Figure 7. The area (A)-water depth (d) relationships for Lake Nasser were derived from 
altimetry water levels and surface area (Landsat) data of Table 4 for Hydroweb (blue) and 
GRLM (red). 

 

Figure 8. Calculated volume for Lake Nasser above the reference level from in situ 
data and GRLM during the period 1999–2000 and from Hydroweb during the period  
1999–2007. Calculated volumes for the gap in the period (2003–2005) show the use of 
the Hydroweb water level in the absence of in situ water levels. The time steps for the 
volumes (Mm3) in GRLM and Hydroweb are 10-day (decadal) and monthly, 
respectively. 
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5.2.3. Reservoir Discharge 

The discharges of Lake Nasser have been computed by the water balance equation. The 
comparison of the three discharges is given in Figure 9. Q (observed) is the observed discharge 
based on the rating curve, Q(wb sat. data-GRLM) is based on satellite data, while Q (wb in situ data) 
is based on in situ data. 

There was good agreement between Q (wb sat. data-GRLM) and Q (wb in situ data), but large 
differences between Q(observed) and either Q (wb sat. data-GRLM) or Q (wb in situ data). The 
estimated discharges were overestimated at both low and high water levels. The 10-day discharge 
Q (wb sat. data-GRLM) poorly agreed with the Q (observed), giving an RMSE of 139% and an R2 
of 0.36 (Table 5). This error far exceeds the acceptable error in discharge measurements in  
large rivers. 

Figure 9. Time series of observed and computed discharges for Lake Nasser during the 
periods 1999–2002 and 2005–2007. Red is Q (observed) based on observed discharge; 
green is Q (wb in situ data); and blue is Q (wb sat. data-GRLM). 

 

The three sets of discharge data were compared to understand error sources. A comparison of  
Q (wb in situ data) and Q (observed) also yielded a relatively large error (RMSE = 137%) and poor 
agreement (R2 = 0.36). Comparing Q (wb sat. data-GRLM) and Q (wb in situ data) resulted in a 
much smaller, but still unacceptably high, error (RMSE = 30%), with a very high R2 of 0.97. This 
may imply that satellite measurements might not be the major source of error. Discharges derived 
using Hydroweb (monthly) data in the water balance computations gave a relatively low error 
compared to GRLM (Table 5). 
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Table 5. Statistics of discharges using satellite data and in situ data in a water balance. 

Study Areas Data Period No. * Observedmean a Estimatedmean a R2 RMSE a %RMSE b 

Roseires Hydroweb 2002–2010 63 3769 3833 0.99 652 17.79% 
In situ data " 101 3792 3869 0.98 611 16.11% 

Lake Nasser Hydroweb 1999–2002 89 5467 4235 0.09 3826 69.98% 
2005–2009 

In situ data " 89 5467 4127 0.26 3566 65.21% 
GRLM 1999–2002 215 11,947 11,409 0.36 16,704 138.92% 

2005–2009 
In situ data " 215 11,947 11,358 0.37 16,416 137.41% 

* Refers to the number of datasets used. a Mm3/month for Hydroweb and in situ data and Mm3/10-day for 
GRLM and in situ data. Observedmean is the mean of the observed discharges, and Estimatedmean is the 
mean of the estimated discharges. b Percentage of the RMSE relative to the mean observed data, i.e.,  
(RMSE/the mean observed discharge) × 100%. 

The difference between Q (observed) and Q (wb) might be due to several reasons. Firstly, it 
could be due to unaccounted spills from the reservoir into the Toshka Depression and to other 
desert streams. It is known that when the reservoir level exceeds 178 m, water may flow into 
Toshka. Bastawesy et al. [38] confirm that there were water releases into Toshka within the period 
1998–2002. This indicates that Toshka receives excess water in certain times of the year when 
water level exceeds 178 m. Secondly, the inflow Qin might have been overestimated in this study, 
as it was measured at about 250 km upstream of the lake and more than 750 km from the outflow 
gates of the dam. Inflow in this reach may not be accurately captured. Finally, the large size of 
Lake Nasser compared to its inflow (i.e., its large residence time) increases the uncertainty in 
computed reservoir releases, compared with that of a reservoir with a smaller residence time (such 
as Roseires Reservoir); i.e., the same error in water level estimation introduces, in the case of a 
reservoir with a large residence time, a large absolute error in the computed volume of the water 
stored, which will translate into a large absolute error in computed outflow, which may result in a 
very large relative error.  

6. Conclusions 

As data on reservoirs are often scarce or not in the public domain, this study evaluated the 
feasibility and accuracy of using satellite altimetry and imagery data to estimate stored water 
volumes and, combined with limited in situ data, discharges from Roseires Reservoir (Sudan) and 
Lake Nasser (Egypt) in the Nile Basin. These estimated discharges would not only provide 
information on water releases to downstream users, but also give insight into the reservoir 
operation strategies. 

The water volume of the reservoirs was derived from the integration of a lake-specific area-level 
relationship. The surface area was estimated from Landsat images using NDWI, while the water 
level was from satellite altimetry. The discharge was computed using the water balance of the 
reservoir. The other components of the water balance (evaporation and rainfall data) were obtained 
from the IWMI online database. The in situ water levels, V-d relations, water inflows and outflows 
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were obtained from the responsible ministries of Sudan and Egypt. The obtained in situ water 
levels, water volumes and discharges were used for the validation of satellite-derived results. 

For Roseires Reservoir, monthly water levels from Hydroweb showed a good agreement with  
in situ water levels (RMSE = 0.92 m and R2 = 0.96). The RMSE of the calculated volume and 
discharge Q (wb, sat. data) were 23% and 18%, respectively. The discharge is within the acceptable 
error of 15%–20% for single discharge measurements in large rivers. The outcome shows the 
potential to use satellite information for reservoir operation, which could be very useful for the 
contexts of no in situ data. The results showed that satellite-derived data can be used as a fairly 
reliable source of information for water resources management at a river basin scale. 

For Lake Nasser, water levels from both GRLM (10-day) and Hydroweb (monthly) agreed  
well with in situ water levels (i.e., RMSE = 0.62 m, R2 = 0.96 and RMSE = 0.72 m, R2 = 0.81, 
respectively). The RMSE of the calculated volume from GRLM and Hydroweb were 10% and 
15%, respectively. However, the error of the estimated discharge based on the water balance was 
quite high. The RMSE of the estimated discharge from GRLM and Hydroweb were 139% and 
70%, respectively. Similarly, the same order of magnitude of error was obtained when the 
discharge was calculated with the water balance equation using in situ measurements. Sources of 
errors could include unaccounted outflows (e.g., reservoir spills to the Toshka Depression and 
water flows to desert streams) and overestimation of the water flowing into Lake Nasser. These 
errors would affect the water balance and influence the computed reservoir discharge. 

This research contributes to the derivation of water discharges/releases in reservoir operations 
where there are limited or no in situ data. Specifically, the stored water volumes of Roseires 
Reservoir and Lake Nasser were successfully estimated, deriving their respective area-level and 
volume-level relationships using satellite data. Furthermore, by combining satellite-derived 
information on storage changes with in situ inflow data, the water releases from the two reservoirs 
could be adequately estimated for Roseires Reservoir, but with major limitations in the case of 
Lake Nasser. In the latter case, some major error sources may in fact not be related to  
satellite-derived information. It is also concluded that in general, error propagation in the 
estimation of reservoir releases for reservoir systems with shorter residence times will be smaller 
than in systems with longer residence times. 

These findings are valuable for water resources management, particularly in a transboundary 
basin, such as the Nile Basin, where data sharing is still limited. 
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Inundations in the Inner Niger Delta: Monitoring and 
Analysis Using MODIS and Global Precipitation Datasets 

Muriel Bergé-Nguyen and Jean-François Crétaux 

Abstract: A method of wetland mapping and flood survey based on satellite optical imagery from 
the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra instrument was used over the 
Inner Niger Delta (IND) from 2000–2013. It has allowed us to describe the phenomenon of 
inundations in the delta and to decompose the flooded areas in the IND into open water and 
mixture of water and dry land, and that aquatic vegetation is separated from bare soil and “dry” 
vegetation. An Empirical Orthogonal Function (EOF) analysis of the MODIS data and precipitation 
rates from a global gridded data set is carried out. Connections between flood sequence and 
precipitation patterns from the upstream part of the Niger and Bani river watersheds up to the IND 
are studied. We have shown that inter-annual variability of flood dominates over the IND and we 
have estimated that the surface extent of open water varies by a factor of four between dry and wet 
years. We finally observed an increase in vegetation over the 14 years of study and a slight 
decrease of open water. 

Reprinted from Remote Sens. Cite as: Bergé-Nguyen, M.; Crétaux, J.-F. Inundations in the Inner 
Niger Delta: Monitoring and Analysis Using MODIS and Global Precipitation Datasets. Remote 
Sens. 2015, 7, 2127-2151. 

1. Introduction 

Satellite imagery is a classic tool used to monitor water extent over large areas of the Earth’s 
surface for long periods of time [1]. The current number and variety of space-borne instruments 
available to observe continental water content is very wide. The choice to use one sensor rather 
than another is generally driven by the type of targets and objectives of the study. 

A flood occurs when a large and usually dry area is covered temporarily by a certain amount of 
water. It can also happen when a large amount of water flows into a channel that is not large 
enough to carry it; the excess water consequently spills over into the surrounding areas. In a flood, 
the lateral water spread dominates the vertical rising, until equilibrium is reached where 
underground recharge and evaporation compensate the surface water inflow in the floodplain. 
Floods may be caused by overspill from river channels, high local precipitation or both phenomena 
acting together. In the first scenario, a significant time gap may occur between the start of the 
upstream rainfall and the time of maximum inundation in the floodplain. 

For example, Zwarts et al. [2] have shown that local rainfall is very limited and that water extent 
over the IND is driven by surface river flow variability in the upstream area of the delta. 

The main purpose of this study is to provide a space-based tool for monitoring floods over the 
IND and to interpret their pluri-annual variability using global precipitation data. 

In Section 2, we give an overview of flooding in the IND. In Section 3, we describe remote 
sensing and precipitation datasets and their processing. In Section 4, we present results for the 
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phenomenology inter-annual water changes, aquatic vegetation and vegetation extent in IND and 
general rainfall patterns over upstream areas of the Niger and Bani rivers. In Section 5, we analyze 
the link between rainfall and inundation over the IND. Perspectives and conclusions are drawn in 
the last section. 

2. Floods over the IND 

The IND is a vast floodplain of 73,000 km2 located in the arid (north part of the delta: 15,000 km2) 
and semi-arid (south part of the delta: 58,000 km2) Sahelian zone (Figure 1). It is composed of 
large numbers of swamps, river channels, permanent lakes and non-permanent flooded areas. The 
IND is seasonally inundated (from September to November) due to rainfall over the Niger and Bani 
Rivers’ upstream areas (From June to September). This produces (when cumulated) an average 
annual discharge at the delta’s entries of 1490 m3 s 1 (period 1955–1996), which represents  
47 km3.yr 1 [3]. Inundations in the southern part are characterized by a regular and rapid flow of 
water while in the northern part the water stays longer [3]. The evaporation rate over the IND 
varies both spatially and temporally: it is higher in the northern part (700 mm/year on average) than 
in the southern part (140 mm/year on average), and depending on the year can vary from 400 to 
1300 mm/year [3]. Inundations over the IND are marked by very high inter-annual and long-term 
variability, which is linked to the amount of rainfall in the upstream rivers’ watersheds. Li et al. [4] 
highlighted large inter-decadal variations of rainfall over the last 50 years, with the wettest decade 
(1950–1960) and the driest (1970–1980) being due to climate variability over the Atlantic Ocean. 
Based on a hydrological water balance model, Mahé et al. [3] calculated that the flooded extent 
over the IND varied from dry to wet years by a factor of 5; from 40,000 km2 in 1955 to 9000 km2 
in 1984. 

Since the IND is a wetland located in an arid region, it serves as a crucial source for the 
economic activity in the region. Several million inhabitants are strongly dependent on water 
resources for agriculture, fishing, and pastoralism. Consequently, inter-annual inundation 
variability plays a major role in water management over the IND and severely impacts land use. 
Thus, the economic and ecological health of the region can be considered vulnerable to and 
dependent on these inter-annual inundation cycles. For example, Liersh et al. [5] have shown that a 
mix of upstream reservoir management and climate warming will provoke a decrease of inflow to 
the delta in the coming decades. 

In another recent study, it has been simulated from Global Climate Models (GCMs) that rainfall 
over the Bani River catchment area will likely decrease until the end of the 21st century by about  
15% to 17%. Consequently, there will be a large reduction in river discharge into the IND [6]. 
Moreover, inundations in the IND influence local rainfall through vertical energy flux and water 
vapor from the land to the atmosphere [7]. They observed a resurgence of daytime cloud cover 
during inundations. This was in response to evaporation over the IND, which in turn increased the 
likeliness of storms in the mid-afternoon, mainly on the western border of the IND. 

As a consequence of rainfall variability over West Africa, land surface occupation (water, 
vegetation, aquatic vegetation, and bare soil) is also changing from year to year resulting in very 
complex patterns that are influenced by the topography of river channels in the delta, presence of 
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vegetation, and the total amount of water filling the IND. During periods of flood, the IND land is 
also subject to noticeable vegetation growth. 

 

Figure 1. Map of the Niger River watershed (yellow) and Inner Niger Delta (IND) 
(zoom). Black lines represent country borders. 

In this context, reliable spatio-temporal information about the extent of water and vegetation 
over the IND is useful in understanding the links with climate variability. In the past, in situ gauges 
measuring river discharge were installed principally at the entries and mouth of the delta [3]. 
Unfortunately, our ability to measure and forecast the total fresh water input in the IND each year  
is quite impossible because of: (1) economic and infrastructural problems generally affecting  
non-industrialized nations; (2) water flow physics across vast lowlands that are not permanently 
inundated; and (3) the fact that measuring water extent variations over such a large area is 
practically impossible from in situ measurements. 

Space-based methods can be an answer to these difficulties in studying water extent over 
wetlands and floodplains. 

Moreover, over the IND the seasonal inundations act as a source of significant evaporative 
losses, which have to be taken into account for regional water cycle modeling. For example, 
Dadson et al. [8] showed that flooded areas over the IND are doubling total losses from land 
surface over the region, that seasonal and inter-annual inundations control the evaporation rate, and 
also that it improves predictions of land-atmosphere energy and water vapor fluxes. Finally, 
knowledge of flooding dynamics in large floodplains within a river basin may also improve global 
climate simulations [9] and constrain hydrodynamical model parameters [1]. 
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3. Data Sets and Methodologies 

3.1. Datasets 

3.1.1. Preamble 

To characterize the process of inundations and their dynamics across floodplains, it is essential 
to measure some key variables related to water extent over the IND and regional patterns of rainfall 
upstream of the delta. 

We will show the results obtained for water extent over the IND, and for the spatial and 
temporal variability of precipitation determined from global gridded data over the upstream 
watershed of the Niger and the Bani rivers and over the floodplains. As mentioned above, we 
expect to correlate the inter-annual variability of floods over the IND to surface discharges from 
upstream rivers (that are directly linked to rainfalls [2]. 

Water extent and precipitation rates over the upstream rivers and the IND have been mapped 
and we have produced a time series of the variables from 2000 to 2013. For water mapping, we use 
the MODIS instrument (Section 3.2) and for precipitation mapping, we use a global gridded 
dataset: TRMM 3B43 version 7 products (Section 3.3). 

3.1.2. MODIS 

The MODIS instrument is a multispectral imaging system installed onboard the Terra (launched 
in December 1999) and Aqua (launched in May 2002) satellites. MODIS provides Earth surface 
reflectance on thirty-six narrow bands of frequency; seven among them are from the visible to Mid 
Infrared part of the spectrum with a spatial resolution of 250 (two first bands) and 500 m  
(all bands): 

• Band 1: 620–670 nm. 
• Band 2: 841–876 nm. 
• Band 3: 459–479 nm. 
• Band 4: 545–565 nm. 
• Band 5: 1230–1250 nm. 
• Band 6: 1628–1652 nm. 
• Band 7: 2107–2155 nm. 

A limitation of optical remote sensing data for flood monitoring is cloud cover. This is 
accentuated in tropical countries. In such situations, MODIS images cannot measure the ground 
surface radiance and consequently cannot provide continuous information on the water extent 
during a flood. However, the IND region is located at the boundary between the Sahara Desert and 
western tropical Africa and is not affected by cloud cover, except during the summer months of 
June to August. Moreover major floods over the IND occur at the end or after the rainy season, 
which reduces this problem. 

The orbits of Terra and Aqua were designed to allow satellites to cross the equator at local time 
10:30 AM and 1:30 PM respectively. Considering that cloud formation linked to flooding over  



489 
 

 

the IND is highest during the afternoons [7], we chose to collect and analyze the mosaic of 
MODIS/Terra instrument on an 8-day time basis. The 8-day composite is a compilation in one 
image of the best signal observed for each pixel over the following 8-day period, which reduces 
errors due to cloud, aerosols and viewing angle. It limits the risk of having long periods without 
valid images. For a detailed description of MODIS algorithms and products, see [10]. Flood 
mapping is thus enabled thanks to this compositing approach that provides enough days of clear 
sky even during the rainy period. We observe less than 5% of noisy images due to cloud presence 
during this period. Moreover, the Terra Instrument allows calculation of the water extent over a 
longer period. 

3.1.3. Rainfall Data 

Many different datasets of precipitation at a global scale exist and we have chosen to use the 
most recent version (7) of the Tropical Rainfall Measuring Mission (TRMM) 3B43 dataset. TRMM 
is the National Aeronautics and Space Administration (NASA) mission launched in November 
1997 and has on-board precipitation radar developed by the Japanese Aerospace Exploration 
Agency (JAXA). It was designed to measure the intensity and distribution of the rain, and map 
storm structures. Here we use data from the 3B43 algorithm because it merges satellite and in situ 
data, TRMM 3 hourly data, and the monthly in situ data of thousands of rain gauges around the 
world compiled by the Global Precipitation Climatology Centre (GPCC). 

The spatial resolution of these products is 0.25° × 0.25°. It was produced over a calendar  
month-time resolution. The data was averaged over the IND (156 pixels from the TRMM datasets) 
on a monthly basis, and limited to the period 2000–2013 to correspond in time with MODIS data 
used in this study. An average climatology of precipitation was calculated every month (Each map 
represents the mean precipitation of the given month based on precipitation from the whole period 
data set). Monthly maps of anomalies are also produced: anomalies are calculated by the difference 
between monthly and average precipitation for each month over the whole period. The maps allow 
detection of geographical patterns for precipitation over the region of interest (ROI) and its  
inter-annual variability. It is then used to determine if the gradient of precipitation between the 
Niger and Bani rivers can explain the flood dynamics measured by MODIS. EOFs over the IND 
and upstream Niger and Bani rivers were also calculated to be compared to a similar analysis of 
MODIS images. It allows the separation of spatio-temporal modes of variability of rainfall  
(Section 3.2). 

To summarize, we have produced: 

• Maps of monthly average climatology, and monthly and yearly anomalies. 
• Time series for total precipitation over both rivers on the upstream part of the IND including  

the IND. 
• EOF spatio-temporal modes for 14 years of data over the ROI. 

A comparison of the results obtained using MODIS and precipitation data sets was also performed. 
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3.2. Methodology to Detect Water over the IND with MODIS and Validation 

A method of land surface classification for hydrology has been developed using a combination 
of three of the seven MODIS bands and is acquired from MOD09A1 (MODIS/Terra Surface 
Reflectance 8-Day L3 Global 500 m SIN Grid V005), Version 5 product [11]. This method was 
applied to many different regions over the Earth and published in several works: the Aral Sea [12], 
The Andean Altiplano ([13,14]), Lake Tchad [11] , The IND ([15,16]), and the Ganga basin [17]. 
Other methods using MODIS images were published for similar studies [18–23]. 

Several other remote sensing instruments had already been used in the literature for flood  
mapping ([1,24–31]). Some of them have much higher spatial resolution (Landsat imagery, ASAR 
on Envisat, Radarsat instrument) but none has a combination of the following advantages for flood 
monitoring: a continuity of homogeneous data over a long period of time, a global coverage of the 
Earth over a short recurrent period (daily/weekly), and a free service. 

Shallow depths and a high suspended sediment concentration, such as those observed along the 
IND considerably increase the amount of solar energy reflected by a body of water ([32–34]) have 
shown that strong water absorption at wavelength >1 m in MODIS bands (5–7) does not allow 
illumination of sediments in the water or at the shallow bottom of a water column. Consequently, 
in order to avoid the problem of suspended particles, the most appropriate band to detect open 
water during a flood event is number 5 in Mid Infra-Red (MIR: 1230–1250 nm). A threshold value 
for reflectance in the IR band of MODIS should be attributed to discriminate water pixel from “no” 
water pixel. 

In this paper, a simple combination of a threshold technique was performed on the MODIS 
Band 5 and Normalized Difference Vegetation Index (NDVI) to delineate the shallow, sediment 
laden, open waters of the IND flood plain. It was also used to discriminate between the mixture of 
water and dry land, aquatic vegetation and vegetation on dry land. It has been assumed that a small 
value of surface reflectance in band 5 allows characterizing open water. For MOD09GHK 
normalized products used in this study, the value of 1200 (a reflectance of 0.12 scale by a factor of 
10,000 for distribution as integer) has been chosen as a cut-off value under which a pixel is 
supposed to be fully inundated. 

When surface reflectance in band 5 increases to the threshold value of 2700, a test is made on 
NDVI to discriminate the pixel covered by a mixture of water, dry land and aquatic vegetation. 
NDVI is a robust index for monitoring temporal changes of vegetation photosynthetic  
activity ([35,36]). In the arid environment of our study area, a high level of vegetation photosynthetic 
activity can only be sustained by the presence of surface water or groundwater discharge. A 
threshold technique is used to select high NDVI values and to detect areas of high photosynthetic 
activity from aquatic vegetation and hydrophilic plants. NDVI ranges from negative values 
(generally considered as open water [37]) to >0.4 for dense vegetation. 

To detect the presence of vegetation on dry land, NDVI is tested. For high reflectance in band 5 
(superior to 2700): if the NDVI index is superior to 0.4, the pixel is considered to be covered with 
vegetation and if it is below 0.4 then the pixel is classified as dry land [11]. 
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To validate this approach and to define the threshold values of NDVI and reflectance in band 5,  
a ground calibration was performed over the Diamantina floodplain in Central Australia in 2006.  
It was determined through aerial photography, laser and radar altimetry, and field measurements of 
different surface types taken from GPS measurements. The transition zones between different types 
of surfaces were precisely delineated and compared to the reflectance on the MODIS data which 
allowed fixing the threshold values given in Table 1 that then have been validated on other regions. 

Table 1. Threshold value used for qualification of ground type is applied to monitor a 
flood event on the flood plain. Units are reflectance scaled by 10,000 as delivered in the 
MOD09GHK product (validation of this method is given in Section 3.2.3). 

Index Open Water Mix Water/Dry Land Aquatic Vegetation Vegetation  Dry Land 
Band 5 <1200 >1200 & <2700 >1200 & <2700 >2700 >2700 
NDVI No Test <0.4 >0.4 >0.4 <0.4 

MODIS images are given in HDF format. They are georeferenced and processed over the ROI 
centered on the IND area. The 8-day mosaic images were acquired over the period February  
2000–December 2013 and processed with the algorithm described above. Three main products were 
obtained from this data processing: 

• A synthetic map of ROI with classification obtained from MODIS images every 8 days. 
• A map representing the average flood duration (in days) over the whole ROI, annual maps 

of flood duration anomalies with respect to average duration, and the Empirical Orthogonal 
Functions (EOFs, see Section 4.3) providing the spatio-temporal modes for each of the 
classes over the whole ROI. 

• Evolution in time of the surface area of each class over the whole ROI. 

The surface time series for each class was correlated with the precipitation rate over the Niger 
and Bani river basins upstream of the IND. 

Validation was performed over the Aral Sea in Central Asia using previous results obtained  
in [38,39]. Variations in height, surface and volume of the Aral Sea were calculated for 1992 to 2005, 
with a combination of altimetry data from Topex/Poseidon and Jason satellites, and a digitized 
bathymetry map of the lake’s basin. We extended this calculation until 2007 for this study. Using a 
selection of 55 MODIS images over the period from 2000 to 2007, we calculated the surface 
variations of Small and Large Aral and compared with the results obtained by altimetry and 
bathymetry. The results are shown in Figure 2. The agreement between both methods of surface 
variation calculations is marked with a correlation coefficient of 0.996 and RMS differences of 
detected water extents less than 2%. 

The method was also validated over Lake Poopo in Bolivia. MODIS products were compared to 
Landsat imagery and resulted in a correlation of 0.97 [14]. They were used to study links between 
Lake Poopo and Lake Titicaca [13]. 
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Figure 2. Scatter plot of classification of open water extent from Moderate Resolution 
Imaging Spectroradiometer and from a combination of satellite altimetry and digitized 
bathymetry of Aral Sea. 

We compared our classification of the IND with results published in [40] for water and 
vegetation classifications. This was done by visual analysis of maps of inundated surfaces 
reproduced in [40] for 3 different dates and they showed good agreement qualitatively, but we did 
not assess this quantitatively. Images processed with our method were also used to validate the 
flood propagation model along the Niger River in [16]. Using our MODIS classification,  
Pedinotti et al. [16] observed improved comparison of their model outputs with downstream  
in situ discharges. 

Furthermore, the MODIS data analysis done in this study allows downscaling low-resolution 
data as proposed in [17]. They used the MODIS classification presented here for water over the 
IND in synergy with the GIEMS database [17]. It provided water extent for the whole Earth on a 
monthly basis from 1993 to 2007 at a spatial resolution of 25 km. 

Comparison of rainfall datasets to MODIS data products over the IND have been performed 
using the EOFs. The EOF analysis decomposes the spatio-temporal data in orthogonal modes of 
decreasing variance, expressed by spatial patterns and associated variations in time (also called 
principal component analysis (PCA)). In this method, we calculate the eigenvalues and 
eigenvectors of the covariance matrix of the data. We first calculated the 14-year average of 
MODIS data for each class and then subtracted it from the yearly average from 2000 to 2013. This 
allowed emphasis on inter-annual variability of the different modes. The theory of this method is 
fully described in [41,42] and the algorithm used in [43]. 

4. Results and Interpretation 

4.1. Land Surface Classification over the IND 

Processing MODIS images has allowed the classification of Earth’s surface using the method 
described in Section 3.2.2 and also the monitoring of time variations for different surface types, from 
open water to vegetation on dry land. The maps are used principally as indicators to monitor floods 
over the IND. They will allow the examination of the flood process over the IND as a first step 
(Section 4.1.1) and second, to detect specific geographical patterns of very wet years compared to 
dry years using the multi-year analysis of MODIS data (Section 4.1.2). Phenomenology and  
inter-annual variability of vegetation and aquatic vegetation dynamics is also examined. 
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4.1.1. Mean Annual Flooding over the IND 

For the period of our study and using the eight-day mosaic images, we classified the land over 
the ROI (Section 3.2). This is shown in Figure 3a,b and represents one full year (2003) using one 
selected image per month with the classification deduced from MODIS data. This figure illustrates 
the sequence of inundation over the IND. The first month selected in the set of images is June, just 
at the beginning of the rainy season, and the last is May of the following year. 

 

 

Figure 3. Moderate Resolution Imaging Spectroradiometer classification of the Inner 
Niger Delta (IND) with one image per month in 2003–2004 being selected for 
illustration of the inundation phenomenon over the Inner Niger Delta (IND) (a) from 
June to November 2003, (b) from December 2003 to May 2004. 
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In June, permanent lakes located in northern IND areas start to grow, with July marking the 
apparition of vegetation in the southern IND and on the delta itself. Vegetation grows regularly and 
the whole region is covered by the end of August. At the same time, free water is still limited to 
small areas like permanent lakes, the main parts of rivers, and some areas of the IND southwest of 
Lake Debo that are also covered with aquatic vegetation (Figure 3a,b). The end of August or 
beginning of September is marked by flow increase over the IND, which continues for around six 
weeks and reaches its peak by mid-October. Meanwhile, surrounding regions of the IND lose their 
vegetation cover. From November to January, water over the IND evaporates and remaining 
vegetation located over the delta simply dries out. We observe that surfaces are first covered with 
aquatic vegetation, and only then followed by vegetation. In January, the IND is almost completely 
dried up except for some very small areas near Lake Debo where it remains wet until June. 

This inundation sequence is also illustrated in Figure 4. It represents (over the 14 years of this 
study) an average surface extent of different classes detected by MODIS over the ROI. In order to be 
comparable, these average surfaces were normalized. This figure shows that the peak of vegetation 
occurs at the beginning of September, whereas the peak for open water, mixture of water and dry 
land and aquatic vegetation appears one and a half months later. 

 

Figure 4. Normalized total extent of each of the classes over the Inner Niger Delta (IND) 
during a hydrological year (starting in June, finishing in May). All years have been 
averaged over each time portion of eight days. 

Aquatic vegetation and open water are also in phase, which signifies that when the main flood 
occurs a small part of the IND is already covered by water or by aquatic vegetation (probably due 
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to local rainfall). The peak of open water is also significantly narrower than that of aquatic 
vegetation. Mixture of water and dry land most likely indicates that: 

• The inundated surface is shallow. 
• The vertical topography slope of the IND is small. 
• Downstream water flow is probably slower due to the presence of vegetation. 

From January to May, the IND and surrounding regions dry out. Surface water evaporates 
completely except for some permanent small lakes such as Lake Debo in the northern part of the 
IND. Vegetation fully disappears from the region, most notably in the Delta. 

The average duration of time over the period 2001–2013 of each class is also given in Figure 
5a–d (2000 is excluded because the first images were collected in mid February 2000). 

(a) (b) 

(c) (d) 

Figure 5. Average duration (in percentage per year) of (a) open water; (b) mixture of 
water and dry land; (c) aquatic vegetation; and (d) vegetation calculated from 2001 to 
2013 (2000 has not been taken into account because the first MODIS data was 
collected in February of this year). 
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Figure 5a shows that flow duration in the southern part of the delta is rather short (less than a 
month) and very heterogeneously distributed. The “NW belt” of long duration (more than two 
months) is highlighted in dark blue. Due to the images’ spatial resolution both the Niger and Bani 
rivers do not appear as permanently covered with water. These can be better viewed in Figure 5b, 
which shows the duration of mixed water (pixel covered both with water and dry land). This is 
confirmation that the southern part of the delta is a zone of rapid water flow and that the northern 
part behaves as a pool where water stays longer [3]. A much larger surface is covered with aquatic 
vegetation and mixture of water and dry land for periods exceeding one month (Figure 5b,c). Over 
the IND aquatic vegetation duration is also noticeably longer on the left bank of the Niger River 
than on its right bank where the Bani River is located. Along the NW belt mentioned above, 
aquatic vegetation duration often exceeds three months (Figure 5c). Dry vegetation (Figure 5d) is 
present almost everywhere over the IND for long period of time (more than three months) and up 
to three to four months on the delta’s west bank. 

4.1.2. Inter-Annual Variability of Floods over the IND 

Satellite images may be used to classify the land surface in time. In the case of the IND it will 
allow monitoring the inter-annual dynamics of different classes, and their correlation with climatic 
condition changes over IND and Niger and Bani river watersheds. 

High variability of inundated surfaces from one year to another is well illustrated in Figure 6, 
which shows a two year period (2001: high inundation year and 2002: low inundation year) when 
MODIS images were taken at the date of maximum extent of flood. The inundation patterns 
observed over these two ‘extreme’ years show a very high spatial variability of inter-annual 
flooding. This is also illustrated in Figure 7: between the wettest year (2001) and the driest one 
(2011) where the maximum extent of open water class varies by a factor of four. This is less 
pronounced for the three other classes with a factor of 2 to 2.5 calculated between wet and dry 
years. Another visualization of inter-annual variability of floods is given in Figure 8a,b. They show 
the anomaly of duration in each class for the wet (2001) and dry (2002) years with respect to the 
average year. They illustrate that not only surface extent varies significantly from the wet to dry 
years, but also the total duration of open water, mixture of water and dry land, aquatic vegetation, 
and vegetation. This is particularly marked for aquatic vegetation and vegetation. Indeed, for open 
water duration anomalies (Figure 8a), we observe up to 60 days of duration differences, principally 
concentrated on the NW belt. For aquatic vegetation and vegetation, we see that on almost the entire 
delta the differences are about 60 days between 2001 and 2002 (Figure 8b). It is also noteworthy that 
we observe the exact opposite behavior with the inter-annual variability of the maximum surface 
extent for each of the classes. The differences between wet and dry years are more pronounced for 
the open water class than for the three others. This indicates that for open water the time of 
residency is less sensitive to the inundation magnitude. 
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Figure 6. Map of Moderate Resolution Imaging Spectroradiometer classification for 
the day of maximum inundation for 2001 (high inundation) and 2002 (low inundation). 

 

Figure 7. Time series of surface extent of open water class calculated from MODIS data. 

Finally, another specific geographical pattern of inter-annual flooding appears in the year 2007. 
2007 is one of the four high flood years (the three others being 2000, 2001 and 2003 (Figure 7)). 
However, the principle origin of the 2007 high flood is the Bani River to the south, which is not the 
case for the other years. Indeed the anomaly of water duration along the Niger River particularly at 
the entrance of the delta is very close to zero in 2007 (Figure 9). This can be contrasted with 2008 
(another high flood year) in which the Bani River does not seem to supply excess water to the 
delta, while the Niger ‘entrance’ to the delta remains flooded much longer (about 30 days) than in 
an average year. This may also explain why the NW belt presents a deficit in the number of flooded 
days in 2007, given that 2007 is among the most flooded years. This reveals that flooding in the 
IND is a combination of high water in both the Bani and Niger rivers, but with changes in their 
roles from one year to another one. This is a factor of complexity for understanding flood processes 
in the IND. 
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Figure 8. Yearly anomalies of duration (in day) of presence of (a) open water and  
(b) mixture of water and dry land; (c) aquatic vegetation; and (d) vegetation for 2001 
and 2002. 

 

Figure 9. Yearly anomalies of duration (in day) of presence of open water for (a) 2007 
and (b) 2008. 
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4.2. Rainfall 

4.2.1. Seasonal Rainfall over West Africa 

Precipitation over this region is the main contributor to inundations over the IND [2]. The exact 
correlation between the amount of precipitation and its geographical patterns with spatio-temporal 
variability of the water extent over the IND is the main issue explored in this study. 

Figure 10 shows mean annual rainfall over West Africa in the vicinity of the IND from TRMM 
3B43 data. This map highlights the latitudinal pattern of annual precipitation with a strong gradient 
from south to north of the region. In the south, where the two rivers take their source, the annual 
rainfall is about 1200–1500 mm, while the north, where the IND is located, is a semi-arid region 
with less than 300 mm/yr of rainfall. 

Using the precipitation data sets, we then calculated a so-called-seasonal “climatology”: a 
monthly map of average rainfall deduced from the full period of observation (Figure 11). Firstly, 
the period from November to April marks the dry season with zero precipitation over both rivers. 
Over the IND, the dry season continues until June with very low rainfall: less than a few dozen mm 
in May. In May, more significant rainfall occurs over the source of the Niger and Bani rivers. But 
the start of the wet season in June is when strong precipitation over the Atlantic coast of West Africa 
moves northeastward. Meanwhile, it starts to rain over the IND itself, with increasing precipitation 
in July and August. In August, precipitation is at its maximum over the entire region. It then starts 
to decrease from the IND to the southwest until November when it is totally dry everywhere 
(Figure 11). 

 

Figure 10. Map of mean annual precipitation over the Inner Niger Delta (IND) and 
upstream basins of Niger and Bani rivers, taken from Tropical Rainfall Measuring 
Mission (TRMM) 3B43 data from 2000 to 2013. 
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Figure 11. Maps on monthly average precipitation from Tropical Rainfall Measuring 
Mission (TRMM) 3B43. 

4.2.2. Rainfall Inter-Annual Variability 

As seen above, the inundation over the IND has strong inter-annual variability. Precipitation 
over this region also presents significant inter-annual fluctuations from a dry year with around  
800 mm/yr to 1100 mm/yr on average for a wet year. From the precipitation data, four years appear 
as wet years: 2003, 2008, 2010 and 2012 (Figure 12a). Figure 12b shows for each year, from 2001 
to 2012, the variations in space of yearly precipitation anomalies (difference of yearly precipitation 
to global average) from dry to wet years. First, we can see a high spatial heterogeneity of rainfall 
anomaly distribution from year to year. The year 2003 is very interesting as it can be seen that 
precipitation data present positive anomalies, but with high spatial heterogeneity. In contrast, years 
2010 and 2012 have a very strong positive anomaly near the IND and the upstream part of the 
Niger and Bani rivers. The year 2008 presents a dipole of a positive anomaly in the west (where the 
Niger River is located) and a negative one in the east (where the Bani River is located). The year 
2002 is a very dry year for the whole area of study. 
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(a) 

 
(b) 

Figure 12. (a) Annual normalized precipitation over the Region Of Interest (ROI) from 
Tropical Rainfall Measuring Mission 3B43 compared to annual normalized coverage 
area of vegetation over the Inner Niger Delta (IND) measured by Moderate Resolution 
Imaging Spectroradiometer; (b) annual rainfall anomalies with respect to the global mean. 
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4.3. Links between Rainfall and Floods over the IND 

It is already well known that inundations over the IND are linked to precipitation upstream of the 
delta. If we analyze the annual precipitation anomaly patterns and compare it to flood patterns over 
the IND, some additional and more detailed conclusions can be drawn. 

From MODIS data we also calculated the total surface using the three classes that include water: 
open water, mixture of water and dry land, and aquatic vegetation. The time series is given in  
Figure 13 where the total inundated surface calculated every eight days is compared to monthly 
rainfall. The data was normalized in order to make a comparison. The first conclusion to be drawn 
from this figure concerns the time shift between maximum rainfall over the Niger and Bani river 
basins and the maximum flood over the IND. We found one and a half months with a standard 
deviation of eight days. It tends to confirm that inundations are due to rainfall in the upstream river 
areas located a few hundred kilometers away from the IND. If we calculate the correlation between 
annual rainfall and maximum inundation over the IND, we obtain 0.65. No decadal trend was 
observed from this analysis showing that for inundations (total of the three “water” classes), the 
inter-annual variability dominates the long-term trend. 

In Section 4.1.2 it can be seen that in 2007 the Bani River was possibly the main contributor to the 
inundation (Figure 9). This is well confirmed by analysis of the precipitation spatio-temporal 
variability. In Figure 10b, it is clear that positive anomalies of rainfall in 2007 were localized over the 
Bani River, while the Niger River globally presents a negative anomaly. Therefore, there is an 
explanation of why an inundation higher than normal was observed in 2007, although this year was not 
considered as one of the wettest years of the study period. From Figure 13 we also see that 2002, 2004, 
2005 and 2011 are the four driest years in terms of inundation. Annual rainfall anomalies (Figure 12a,b) 
also show that these years were characterized by a large rainfall deficit over the Niger and Bani rivers 
upstream of the delta. 

If the precipitation data is now compared with vegetation cover over the IND, we see an 
increase in vegetation of 21% over the 14-year study while only a slight 6% total precipitation 
increase is apparent (Figure 12a). Monthly rainfall is also compared with the eight-day vegetation class 
from MODIS (Figure 13). It shows that maximum rainfall corresponds exactly to maximum 
vegetation cover over the IND. But the apparition of vegetation is shifted each year by more than 
three months after the first rainfall in March and April. This is easily explained by Figure 11 which 
shows that if rainfall appears earlier in the year over the upstream river basins, it will start only in 
June or July over the IND. 

To complete the comparison between rainfall and inundation over the IND, we performed an 
EOF analysis over the different datasets. 

Figure 14a–d shows the first mode of spatio-temporal variations for the water, mixture of water 
and dry land, aquatic vegetation and vegetation. The EOF was applied from 2001 to 2013, 
excluding year 2000 as the first processed MODIS images date back to February 2000. For each of 
the four classes, the first mode represents 30%–40% of signal variance. Its temporal variation is 
well correlated with the time series of surface extent for each of these classes. For example, for 
open water it is directly recognized from mode 1 that the years 2002, 2004, 2005, 2006 and 2011 are 



503 
 

 

considered as globally dry, as was already observed in Figure 13. In order to recompose the total 
signal we must add the factor of the spatial and temporal modes of the whole decomposition. Here 
positive values of temporal mode correspond to dry year as the spatial mode is negative over the 
entire ROI. It can also be seen that for the three first classes, temporal variations are very similar 
with only slight differences, which enhances the assumption that rainfall inter-annual variability is 
the main driver for these classes. For vegetation (Figure 14d), a global increase over the study 
period is observed (with the main signal in the west outside of the delta), which is also confirmed by 
direct calculation of annual vegetation cover (Figure 12a). It is noteworthy that spatial mode 1 of 
open water classes clearly exhibits the presence of the alleged NW belt (Section 4.1 Figure 5a). 
There is a globally distributed increase in aquatic vegetation over the IND, and that for all classes, 
the dry year of 2011 is well explained by the first mode of variations. 

 

Figure 13. Time series of monthly precipitation over the Region Of Interest (ROI) 
compared to inundated surfaces over the Inner Niger Delta (IND) including open water, 
mixture of water and dry land and aquatic vegetation, and to vegetation total extent. All 
data has been normalized for the comparison. 

The same computation was made with the rainfall data. EOFs for the first three modes 
(explaining approximately 65% of the signal variance) are given in Figure 15a–c. Mode 1 is 
exclusively representative of rainfall over the upstream part of the Niger River (south west of the 
watershed: red zone in Figure 15a), while mode 2 exhibits a dipole between the delta area and 
upstream of the Niger River (Figure 15b). Mode 3 (still explaining 7% of the variance for total 
rainfall) presents specific spatial patterns with mainly two small regions participating in the signal: 
the far upstream of the Niger River and the west part of the delta (blue zones in Figure 15c). A 
large signal on mode 3 is also present in the south (red zones in Figure 15c) but is located outside 
the watershed of the two rivers. 
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Figure 14. Moderate Resolution Imaging Spectroradiometer Empirical Orthogonal 
Functions (EOF) mode 1 for (a) open water; (b) mixture of water and dry land; (c) 
aquatic vegetation and (d) vegetation over the Region Of Interest (ROI) (black line’s 
polygon). Units of Empirical Orthogonal Functions time series are normalized. 
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Mode 1 explains some of the inter-annual inundation variability observed over the IND. We see 
that the two years of high inundation (2003 and 2008) are quite fully explained by this first mode 
(Figure 15a). The high peak on mode 2 observed in 2010 with spatial signal closer to the IND 
(Figure 15b) explains why this was a highly inundated year. In 2012, the conjunction of high 
precipitation in the entire basin (mode 1 and 2 spatial distribution complete each other for this year) 
explains the inundation. In 2001, mode 3 seems responsible for the observed excess of open water 
over the IND. For this year again, it seems that precipitation excess is localized far upstream of the 
Niger and close to the delta in the west (map of spatial mode 3: Figure 15c). Mode 3 also 
contributes slightly to the 2008 inundation, in addition to mode 1. The dry years of 2002, 2004, 
2005 and 2011 are well explained by mode 1, with a deficit of water over the upstream Niger 
(Figure 15a). In 2002, the drought is amplified by mode 2, which indicates a general deficit of 
rainfall (as also seen in Figure 12b). For 2004, amplification comes from the western part of the 
delta (Figure 15c). 

 

Figure 15. Three first Empirical Orthogonal Functions (EOF) modes (a–c) of 
precipitation over the Region of Interest, calculated with Tropical Rainfall Measuring 
Mission (TRMM) 3B43 data. 

Figure 15a,b also highlights that mode 1 is dominated by inter-annual variability with a slight 
additional decreasing trend over the study period while mode 2 shows increasing rainfall near the 
IND. This may explain why inundation over the IND is marked by a trend and why the direct 
increase in precipitation near the delta may be a cause of vegetation growth in this area. If temporal 
variability of mode 2 of the rainfall and mode 1 of the vegetation cover are compared over the IND, 
the correlation is 0.73. Strong vegetation growth was also observed near the western delta (Figure 
14d), which is also in good agreement with observations by [7]. It could be a combination of modes 
2 and 3, which exhibit rainfall anomalies over this region. 

Figure 16 shows the third mode of the open water class over the IND representing 11% of signal 
variance, and we can observe a dipole between the part of the delta fed by the Niger River and the 
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part of the delta fed by the Bani River. This indicates a slight decrease of several days per year in 
inundation in the west part of the IND and an increase in the eastern part. The decrease in 
precipitation over the Niger River observed by mode 1 of rainfall (Figure 15a without any signal 
over the Bani River) and combined with an increase in precipitation over the Bani (which can be 
observed from mode 2 of rainfall (Figure 15b)) may explain this dichotomy between western and 
eastern parts of the delta. The spatial repartition of the signal from mode 2 also includes a part of 
the Niger River but in the region near the delta. This region has lower rainfall than over the 
upstream area and therefore does not compensate the general decrease, as observed by mode 1 in 
the upstream part of Niger River. 

 

Figure 16. Empirical Orthogonal Functions (EOF) modes of Moderate Resolution 
Imaging Spectroradiometer open water class over the Region Of Interest (ROI). 

The EOF analysis therefore allows a more detailed description of the geographical patterns of 
inundations over the delta and the dichotomy of both rivers contributing to the delta. 

5. Conclusions 

In this study, we applied a methodology based on MODIS imagery analysis to detect water and 
vegetation over the Inner Niger Delta floodplains. Understanding inundation sequences and 
processes for regions such as the Inner Niger Delta are crucial for economic purposes as land use is 
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affected. Precise yearly flood monitoring is crucial for pastoral agriculture, particularly in the frame of 
inter-annual climate fluctuations. 

We have shown that MODIS images are suitable to achieve global coverage and continuous 
monitoring of floodplain inundations like that of the Inner Niger Delta and it has allowed us to 
describe the phenomenon of inundations in the delta in terms of water and vegetation extents. We 
have demonstrated that inter-annual variability of flood patterns dominates the IND. Another 
interesting result of this study, deduced from Empirical Orthogonal Functions analysis of MODIS 
and TRMM 3B43 data, is the characterization of the respective roles of the Niger and Bani rivers in 
the flooding process over the IND. We have determined the link between spatial patterns of water 
(including open water, mixture of water and dry land, and aquatic vegetation) and vegetation with 
rainfall on the upstream part of the two rivers and over the IND. We observed a factor of four on 
the total open water extent between dry and wet years and estimated the time residency of different 
types of surface over the Inner Niger Delta presenting high inter-annual anomalies. Moreover, a 
general increase in vegetation over the study period (2000–2013) and a slight decrease of open water 
has been revealed. For inundated areas the inter-annual variability is predominant. 

In addition to in situ observations and hydrological modeling (global/regional climate and 
hydrodynamical models), space observations may significantly help improve our understanding of 
hydrological processes in floodplains and their interaction with climate variability. Assimilation of 
remote sensing data in a model of an ungauged basin is a recurrent issue, especially in a complex 
geographical system like the Inner Niger Delta, which is a mix of small rivers, channels, swamps  
and lakes [44]. 
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Seven Years of Advanced Synthetic Aperture Radar (ASAR) 
Global Monitoring (GM) of Surface Soil Moisture over Africa 

Alena Dostálová, Marcela Doubková, Daniel Sabel, Bernhard Bauer-Marschallinger and 
Wolfgang Wagner 

Abstract: A surface soil moisture (SSM) product at a 1-km spatial resolution derived from the 
Envisat Advanced Synthetic Aperture Radar (ASAR) Global Monitoring (GM) mode data was 
evaluated over the entire African continent using coarse spatial resolution SSM acquisitions from 
the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and the 
Noah land surface model from the Global Land Data Assimilation System (GLDAS-NOAH). The 
evaluation was performed in terms of relative soil moisture values (%), as well as anomalies from 
the seasonal cycle. Considering the high radiometric noise of the ASAR GM data, the SSM product 
exhibits a good ability (Pearson correlation coefficient (R) = ~0.6 for relative soil moisture values 
and root mean square difference (RMSD) = 11% when averaged to 5-km resolution) to monitor 
temporal soil moisture variability in regions with low to medium density vegetation and yearly 
rainfall >250 mm. The findings agree with previous evaluation studies performed over Australia 
and further strengthen the understanding of the quality of the ASAR GM SSM product and its 
potential for data assimilation. Problems identified in the ASAR GM algorithm over arid regions 
were explained by azimuthal effects. Diverse backscatter behavior over different soil types was 
identified. The insights gained about the quality of the data were used to establish a reliable 
masking of the existing ASAR GM SSM product and the identification of areas where further 
research is needed for the future Sentinel-1-derived SSM products. 

Reprinted from Remote Sens. Cite as: Dostálová, A.; Doubková, M.; Sabel, D.;  
Bauer-Marschallinger, B.; Wagner, W. Seven Years of Advanced Synthetic Aperture Radar 
(ASAR) Global Monitoring (GM) of Surface Soil Moisture over Africa. Remote Sens. 2014, 6, 
7683-7707. 

1. Introduction 

The ability of coarse resolution (~25–50 km) microwave remote sensing products from  
both passive and active satellites to capture the variability of soil moisture was demonstrated by 
numerous studies (e.g., [1–4]). Their benefits in many research fields, such as numerical weather 
forecasting [5,6], runoff modeling [7,8], agricultural drought monitoring [9], land data  
assimilation [10] or studies of land atmospheric feedbacks [11], have been demonstrated. 
Consequently, these products have become commonly accepted in the past few years. 

Surface soil moisture (SSM) products with improved spatial resolution are expected to broaden 
the number of applications and allow the usage of the SSM data in regional higher spatial 
resolution models. Motivated by the latter, the use of Synthetic Aperture Radar (SAR) ScanSAR 
data to monitor SSM was suggested by Wagner et al. [12,13]. 
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The Advanced Synthetic Aperture Radar (ASAR) sensor onboard the Envisat satellite was an 
active microwave system operating at a central frequency of 5.331 GHz (C-band). It offers multiple 
acquisition modes employing both the conventional stripmap SAR, as well as the ScanSAR 
technique. The ScanSAR Global Monitoring (GM) mode provided global measurements with a 
trade-off between spatial (1 km) and temporal resolution (four to seven days, dependent also on the 
sensor acquisition plan) and, therefore, allows the monitoring of dynamic processes, such as soil 
moisture, on regional to global scales [13]. The ASAR GM SSM has been derived over Oklahoma 
and Australia, and the evaluation studies over these regions proved the ability of the product to 
resolve the spatial details in the soil moisture patterns that were not observable with the coarse 
resolution scatterometers or radiometers. Nonetheless, spatial averaging to between 3 and 10 km 
was recommended to reduce the high noise of the ASAR measurements caused by the relatively 
low radiometric accuracy (~1.2 dB) [14,15] of the GM mode measurements [16–18]. 

For small-scale applications, also Wide Swath (WS) mode, Image Mode (IM) or Alternating 
Polarization (AP) mode are used [19–21]. These modes offer even higher spatial resolution (30 m 
for AP and IM, 150 m for WS) and radiometric accuracy (~0.6 dB in the case of WS [22]) with 
regional spatial coverage and irregular temporal sampling. Gruber et al. [14] and Baup et al. [19] 
showed that the WS mode offers better performance in terms of radiometric resolution, radiometric 
stability and speckle reduction than the GM mode. This is, however, at the cost of lower temporal 
resolution and reduced spatial coverage of WS when compared to the GM mode. 

At the time of writing of this publication, the Sentinel-1 SAR sensor is in the commissioning  
phase. The Sentinel-1 sensor is an active microwave system operating at a central frequency  
(5.405 GHz) that is very close to that of ASAR (5.331 GHz). The transfer of the SSM retrieval 
algorithm to Sentinel-1 has therefore been foreseen and has been discussed in a number of  
publications [14,15,23,24]. Given the significantly improved radiometric resolution of the Sentinel-1 
(0.05–0.07 dB) combined with a regular temporal coverage, soil moisture products derived from 
Sentinel-1 are expected to be of considerably better quality when compared to the ASAR SSM 
products [14,15]. 

Within the European Space Agency’s (ESA) Tiger Innovator projects Soil Moisture for 
Hydrometeorologic Applications (SHARE) and TIGER-NET a 1-km surface soil moisture product 
was developed and processed over the African continent based on the complete archive of the 
ASAR GM mode data (December 2004 to April 2012). The production and evaluation of the 
ASAR GM product over the entire African continent is scientifically valuable given the variability 
of the climatological, biogeographical, pedological and lithological characteristics over the continent, 
which is expected to reveal new challenges and opportunities for improvements of the Vienna 
University of Technology (TU Wien) algorithm [25]. For instance, prior studies using a 
scatterometer demonstrated some unexpected backscatter behavior and negative correlations 
between the SSM estimates from active and passive sensors over very dry areas [1]. Similar 
problems can be expected to occur in the SAR SSM products. However, the higher spatial 
resolution of SAR data may improve the understanding of the regionalization of such phenomena 
and link it to other parameters, such as soil types, lithology, vegetation or combinations thereof. 
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The evaluation step is performed using SSM data from the Advanced Microwave Scanning 
Radiometer for Earth Observing System (AMSR-E), as well as from the Noah land surface model 
from the Global Land Data Assimilation System (GLDAS-NOAH). According to the suggestion  
in [16–18], the 1-km dataset was aggregated to 5-km spatial resolution prior to the evaluation. Due 
to the scale difference between the aggregated ASAR GM SSM product (5 km) and reference SSM 
datasets (0.25°), the evaluation cannot take advantage of the high spatial resolution of the ASAR 
observations. The uncertainties in the reference data together with the spatial sampling error will be 
included in the bivariate error measures [26]. However, the evaluation against in situ and medium 
resolution datasets was impossible at the continental scale, due to a lack of such data over the 
African continent. To assess the role of the improved radiometric resolution, the evaluation 
includes a comparison between the performance of GM and WS SSM product over the  
Zambezi catchment. 

2. Datasets 

2.1. ASAR Surface Soil Moisture 

The ASAR SSM dataset was retrieved using a TU Wien change detection algorithm [25] and 
represents the relative surface soil moisture in the upper soil layer (<3 cm) at 1-km spatial 
resolution. The algorithm was originally developed for data from European Remote-Sensing 
Satellite (ERS) and Advanced Scatterometer (ASCAT) scatterometers [25] and subsequently 
adopted for ASAR GM [17] and WS data, respectively. In the case of high-resolution WS data, 
averaging was performed within the georeferencing step. The spatial resolution of the 
georeferenced WS dataset is 1 km, and the radiometric resolution is enhanced from ~0.6 dB to ~0.2 
dB [14]. The characteristics of the GM and WS mode data are summarized in Table 1. 

The change detection algorithm assumes a linear relationship between changes in volumetric 
soil moisture content and changes of backscatter expressed in decibels. The degree of saturation in 
the soil pores is estimated by relating each backscatter value to backscatter reference maps 
representing wet and dry soil conditions. Wet and dry conditions refer to a completely dry soil and 
saturation of the soil, respectively. For a sufficiently dense multi-year time series of backscatter 
measurements, the assumption is that measurements for both dry and wet soil conditions are 
captured, allowing maps of the dry and wet references to be derived from the data. However, over 
arid and semi-arid areas, a so-called wet correction [27] must be applied to the dataset, as the 
probability of acquisitions for wet conditions is very low. An empirical correction of biases in the 
wet reference is applied when the wet reference is below 6 dB and the sensitivity (the difference 
between wet and dry reference) is less than 10 dB. The wet reference is then increased to a value of 
maximum 6 dB, under the condition that the sensitivity is not made greater than 10 dB. The unit of 
the resulting product represents the degree of saturation (%). 
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Table 1. The characteristics of the Advanced Synthetic Aperture Radar Global 
Monitoring mode and Wide Swath mode data. 

 Global Monitoring Mode Wide Swath Mode 
Central frequency 5.331 GHz (C-Band) 5.331 GHz (C-Band) 
Spatial resolution 1000 m 150 m 

Radiometric resolution ~1.2 dB ~0.6 dB 

Temporal resolution Irregular, typically 4 to 7 days 
Irregular, dependent on the 

sensor acquisition plan 

Spatial coverage Global 
Regional, dependent on the 

sensor acquisition plan 
Polarization used H/H H/H 

Orbit direction used Ascending and descending Ascending and descending 

In total, more than 18,000 ASAR GM over the whole continent and 1100 ASAR WS images 
over Zambezi catchment were processed. For the evaluation of WS data, the Zambezi catchment 
was chosen due to the high coverage of WS acquisitions in the area. Erroneous datasets 
(exceptionally high or low backscatter values, strong striping within an image and shifted images) 
were removed. The resulting ASAR GM SSM data coverage is shown at Figure 1. Limited 
coverage in some areas is due to conflicting data acquisitions in other modes. 

Figure 1. The number of Advanced Synthetic Aperture Radar Global Monitoring mode 
Surface Soil Moisture measurements between December 2004 and April 2012. 
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2.2. Reference Datasets 

2.2.1. AMSR-E VUA SSM 

The AMSR-E SSM is derived from the C-band brightness temperature using Version 3 of the  
Land Parameter Retrieval Model [28] by Vrije Universiteit Amsterdam (VUA). It represents the 
volumetric soil moisture (m3/m3) in the near-surface soil layer (<3 cm) at the original spatial 
resolution of 56 km (resampled to a grid with a sampling distance of 0.25°). Only soil moisture 
retrievals based on descending (night-time) orbit data were used, as these are expected to be more 
accurate than day-time acquisitions due to the reduced difference between the surface and canopy 
temperature at night [2]. 

2.2.3. GLDAS-NOAH SSM 

The GLDAS-NOAH model contains land surface parameters simulated from the Noah model in 
the Global Land Data Assimilation System [29]. The SSM dataset represents the modelled soil 
moisture information in the upper soil layer (approximately 0–10 cm) at a spatial resolution of 0.25°. 

2.3. Ancillary Datasets 

The land cover information is retrieved from the U.S. Geological Survey Global Land Cover 
Characteristics (USGS GLCC) Land Use/Land Cover System (data available from the U.S. 
Geological Survey) [30]. For the soil type information, the Harmonized World Soil Database 
(HWSD) was used (data available from the International Institute for Applied Systems Analysis) [31]. 
Mean yearly precipitation was computed from the Tropical Rainfall Measuring Mission (TRMM) 
monthly rainfall data (TRMM 3B42 V7 product available from NASA Goddard Earth Sciences 
Data and Information Services Center) [32] and the mean Normalized Difference Vegetation Index 
(NDVI) from Moderate-Resolution Imaging Spectroradiometer (MODIS) NDVI measurements 
between 2005 and 2011 (the MOD13Q1 product available from NASA Land Processes Distributed 
Active Archive Center, USGS/Earth Resources Observation and Science Center) [33]. The 
ancillary datasets are shown in Figure 2. 

3. Methods 

A variety of statistical metrics exists for quantifying the agreement between datasets. Each 
metric is robust with respect to some attributes and relatively insensitive or incomplete with respect 
to others. For example, if there is no variation in the real soil moisture content, there may not be 
any linear correlation between soil moisture datasets, even though the datasets may be accurate in 
absolute terms. On the other hand, the retrievals can be biased in their mean and dynamic range, 
but still well reproduce the temporal variability [34] and can be useful in data assimilation if the 
biases are corrected and the errors are small relative to the model prediction errors. In this study, 
two common bivariate error measures were used: the Pearson correlation coefficient (R) as a 
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measure of linear dependency and the root mean square difference (RMSD) as a measure of the 
closeness of the ASAR SSM dataset to the reference dataset. 

Figure 2. Ancillary datasets used for the evaluation: (a) mean yearly Normalized 
Difference Vegetation Index (NDVI) value from Moderate-Resolution Imaging 
Spectroradiometer (MODIS) NDVI measurements; (b) mean yearly precipitation from 
Tropical Rainfall Measuring Mission (TRMM) monthly rainfall data; (c) Land 
Use/Land Cover System from the U.S. Geological Survey Global Land Cover 
Characteristics; (d) Harmonized World Soil Database soil type classification. 
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In case of a strong seasonality of soil moisture, R results will be dominated by the seasonal 
variation and will not reflect the ability of the product to detect single events [5]. To avoid this 
limitation, R is computed for both the original soil moisture values and the SSM anomalies 
(SSManom). The anomalies are computed following Brocca et al. [2] with a modification of a longer 
time window: 

 (1)

where SSM(t) corresponds to the surface soil moisture value obtained from the satellite 
measurement or modeled data at time t and the overbar and  stand for the temporal mean and 
standard deviation operators, respectively, for a time window of 8 weeks. All available 
measurements within the time window were used to compute the temporal mean and standard 
deviation for each product. A threshold of at least 10 acquisitions within the time window and 50 
available data pairs was set. The resulting SSM anomaly is dimensionless. 

To reduce the radiometric noise and to provide a better signal-to-noise ratio, the ASAR SSM 
dataset was spatially averaged to 5-km resolution following the recommendations of preceding  
studies [17,18]. The R and RMSD were computed between the ASAR 5-km pixel and the nearest 
acquisition of the AMSR-E and GLDAS-NOAH, respectively. The measures were computed for 
the entire continent with the exception of land cover classes where the soil moisture retrieval is not 
possible. These classes were selected using the USGS GLCC Land Use/Land Cover System and 
include urban areas, water bodies and densely vegetated areas (represented by the class of 
evergreen broadleaf forest). Temporal matching of the datasets was performed separately for 
ASAR SSM, GLDAS-NOAH and AMSR-E SSM, respectively. A maximum difference of 12 h 
between the satellite acquisitions was allowed in the case of ASAR and AMSR-E data. To remove 
bias and to overcome the problem of different units (%, m3/m3, kg/m3), the linear regression 
transformation of the reference datasets to the ASAR SSM was applied. The resulting RMSD 
highlights the random errors between the datasets. 

The evaluation metrics were assessed for different land cover classes and soil types. In the case 
of 1-km resolution ancillary data, the prevailing class within the 5-km resolution evaluation pixel 
was selected. Based on our results, a new mask was proposed that distinguishes between areas 
where the TU Wien algorithm is well suited for the soil moisture retrieval from ASAR observations 
from those where the algorithm fails. Finally, possible causes for algorithm failure were proposed. 

In the final section, the possible improvements of the evaluation results are assessed when the 
ASAR GM algorithm is transferred to data with improved radiometric resolution (i.e., Sentinel-1).  
The ASAR WS data aggregated to 1-km spatial resolution was used for the evaluation and the 
results were compared both to the 1-km and aggregated 5-km GM product. Due to the lower 
temporal resolution of the WS data, the SSM anomalies were not computed, and only  
GLDAS-NOAH SSM was used as a reference. The above specified spatial and temporal matching 
of the data, as well as the linear regression transformation applies also for 1-km resolution data. 
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4. Results and Discussion 

4.1. Correlation Results Analysis 

The correlation results (Figure 3) indicate a good ability of the ASAR GM to depict SSM 
variability over areas with mean annual rainfall greater than 300 mm and mean NDVI above 0.2 
(Figure 2a,b) The mean R over the entire continent equals 0.35 and 0.34 for SSM values for AMSR-E 
and GLDAS-NOAH, respectively. As expected, the corresponding mean R for the SSM anomalies 
is lower (0.23 and 0.2, respectively) due to the lower variability of the SSM anomalies time series. 
It should be reiterated that urban areas, water bodies and vegetated areas are not included in the 
latter results. Arid and semi-arid regions (precipitation < 300 mm/year and NDVI < 0.2) are 
dominated by correlation values below 0.3. In some areas, negative correlation values down to 0.7 
are found. Such negative correlations have been previously observed at the C-band between 
scatterometer acquisitions and modeled SSM [35]. The assumption is that the inverse behavior may 
be attributed to enhanced backscatter due to the volume scattering over very dry soils [1]. The 
highest positive correlations of original SSM values (>0.6) were found over areas with sufficient 
rainfall (500 to 1500 mm/year) and moderate vegetation cover (mean NDVI of 0.3 to 0.6). 
Correlation values of the SSM anomalies are generally lower (~0.4) in these areas. The results 
suggest that the ASAR GM SSM product can capture the seasonal cycle of soil moisture well, 
whereas its ability to represent single precipitation events is lower. The possible reasons may be the 
low ASAR GM radiometric accuracy. The correlation values sharply increase towards middle 
NDVI (~0.4) and precipitation values (~800 mm for GLDAS and ~600 mm for AMSR-E) and then 
stagnate to decrease towards denser vegetation and higher annual rainfall. The dependency of R on 
precipitation amount and vegetation density is shown in Figure 4. The figure also depicts the lower 
R values at higher vegetation density when computed with AMSR-E as a reference (Figure 4d). 
Dorigo et al. [36] made similar observations and attributed the behavior to the lower quality of the 
AMSR-E product over vegetated areas. 

The R values close to zero are found over desert areas and also over the irrigated cropland and 
pasture classes (Figure 5). A significant portion of the latter class is composed of the regularly 
flooded vegetated areas in the Nile Delta. Similarly, a weak correlation (R = ~0.3) is found over 
wetlands. In both cases, the change detection algorithm is hampered by the backscatter decrease, 
due to the regular flooding. The scrubland class according to the USGS GLCC represents a wide 
variety of regions. In particular, it spreads over areas with average yearly rainfall between 100 and 
500 mm/year. This causes the range of R values to be between 0.1 and 0.6. 

The R values for anomalies are less stratified by the land cover class when compared to the 
absolute values. The possible reason is that the impact of the ASAR GM noise on the R values is 
higher than the impact due to the vegetation attenuation. Furthermore, the influence of the strong 
seasonal cycle causing the large variability of SSM values in some land cover classes (i.e., 
savannas) is reduced. 
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Figure 3. (a,b) The correlation coefficient between the Advanced Synthetic Aperture 
Radar (ASAR) Global Monitoring (GM) (original Surface Soil Moisture (SSM) values) 
and Noah model from the Global Land Data Assimilation System (GLDAS-NOAH) 
SSM and Advanced Microwave Scanning Radiometer for Earth Observing System 
(AMSR-E) SSM, respectively; (c,d) the correlation coefficient between ASAR GM 
(SSM anomalies) and GLDAS-NOAH SSM and AMSR-E SSM, respectively. The grey 
color represents the masked areas (rain forests and urban areas) or areas with insufficient 
data coverage (below 50 data pairs). 
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Figure 4. (a,b) The correlation coefficient (R) as a function of average precipitation for the 
Advanced Synthetic Aperture Radar (ASAR) Global Monitoring (GM) Surface Soil 
Moisture (SSM) vs. the Noah model from the Global Land Data Assimilation System  
(GLDAS-NOAH) and Advanced Microwave Scanning Radiometer for Earth Observing 
System (AMSR-E) SSM, respectively; (c,d) R as a function of average Normalized 
Difference Vegetation Index for ASAR GM SSM vs. GLDAS-NOAH and AMSR-E SSM, 
respectively. The solid line represents the median value; dashed lines represent the 25th and 
the 75th quartile. 

 

As for the soil types, high correlation values are found over the tropical and sub-tropical soils 
connected to pronounced dry and wet periods over these regions (i.e., Plinthosols, Lixisols or 
Vertisols) (Figure 6). Strong seasonality with repeated wetting and drying of these soil types is well 
captured in ASAR GM SSM data, resulting in median correlation values around 0.7. The lowest R 
values are found over the soils connected with permanently dry environments, such as Calcisols 
and Gypsisols, or over Solonchaks, characterized by soluble salt accumulation. 

Strikingly low and even negative correlation values can be found in arid regions that appear to 
be related to soil type composition (Figure 2b). To quantify this relationship, the R values were 
computed for different soil types over Barren or sparsely vegetated land cover classes with annual 
rainfall between 100 and 250 mm (Figure 7a). Generally, the correlation values are close to zero, 
but the distribution over various soil types differs. The lowest correlation values can be found over 
Calcisols, Leptosols and Solonchaks with a median value of about 0.1, whereas Cambisols and 
Arenosols show a median correlation of 0.2. Similarly, differences in the correlation results can be 
observed also in other land cover classes and precipitation ranges. A strong dependency on soil 
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type is observable; for instance, in the case of the land cover class, scrubland, combined with an 
annual rainfall between 400 and 500 mm, and the median correlation varies between 0.17 in the 
case of Leptosols and 0.55 in the case of Arenosols (Figure 7b). 

Figure 5. The box-plot representation of the correlation results stratified by the Land 
use/Land Cover system from U.S. Geological Survey Global Land Cover 
Characteristics. The boxes show the median, 25th and 75th percentiles; the lines 
represent minimum and maximum values after outlier removal (first and 99th 
percentile). The amount of 5-km Advanced Synthetic Aperture Radar (ASAR) pixels 
used for the evaluation for each class is shown in brackets behind the class name. (Left) 
The original Surface Soil Moisture (SSM) values; (Right) SSM anomalies. (Top) 
ASAR Global Monitoring (GM) mode vs. Advanced Microwave Scanning Radiometer 
for Earth Observing System (AMSR-E); (Bottom) ASAR GM vs. the Noah model from 
the Global Land Data Assimilation System (GLDAS-NOAH). 
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Figure 6. The box-plot representation of the correlation results stratified by the 
Harmonized World Soil Database soil types. The boxes show the median, 25th and 75th 
percentiles; the lines represent minimum and maximum values after outlier removal  
(first and 99th percentile). The amount of 5-km Advanced Synthetic Aperture Radar 
(ASAR) pixels used for the evaluation for each class is shown in brackets behind the 
class name. (Left) Original Surface Soil Moisture (SSM) values; (Right) SSM 
anomalies. (Top) ASAR Global Monitoring (GM) mode vs. Advanced Microwave 
Scanning Radiometer for Earth Observing System (AMSR-E); (Bottom) ASAR GM vs. 
the Noah model from the Global Land Data Assimilation System (GLDAS-NOAH). 
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Figure 7. The box-plot representation of the correlation results for 5-km Advanced 
Synthetic Aperture Radar (ASAR) Global Monitoring (GM) and the Noah model from 
the Global Land Data Assimilation System (GLDAS-NOAH) Surface Soil Moisture 
(SSM) stratified by the Harmonized World Soil Database soil types for specific land 
cover class and precipitation categories. The boxes show the median, 25th and 75th 
percentiles; the lines represent minimum and maximum values after outlier removal 
(first and 99th percentile). The amount of 5-km ASAR pixels used for the evaluation 
for each class is shown in brackets behind the class name. (Left) barren or sparsely 
vegetated land cover classes with annual rainfall of 100 to 250 mm; (Right) scrubland 
land cover class with annual rainfall of 400 to 500 mm. 

 

The Calcisol top-layer soil is traditionally crumb or granular. Although it has good water 
holding properties, slaking and crust formation may hinder the infiltration of rain water and cause 
surface run-off. The Leptosols soil group is widely spread with different physical and hydrological 
properties, but generally, it is defined as very shallow (<25 cm) soils over hard rock or extremely 
gravely and/or stony deeper soils. The Arenosols group consists of sandy soils. It is usually deep 
and has less than 35% of rock fragments within 100 cm of the soil surface, enabling good 
sensitivity to surface soil moisture. Cambisols are typically medium-textured and have a high 
porosity and a good water holding capacity [37]. Clearly, the soil structure and hydrological 
properties influence the behavior of backscatter over arid areas. This topic requires further research 
together with detailed and precise soil information. 

4.2. RMSD Results Analysis 

The overall patterns of the RMSD maps (Figure 8) reflect the large-scale precipitation forcing 
and the vegetation and geomorphological structures at medium (~5 km) scales. The distribution of 
RMSD values can be divided into areas with high RMSDs over regions with higher annual rainfall 
(>250 mm) and those with relatively low RMSD values over dry regions (<250 mm) (Figure 2a). 
This was expected, as the magnitude of the RMSD is also dependent on the local variability of soil  
moisture [38]. The RMSD maps correspond quite well over sparse vegetation with lower values of 
about 1.5% for AMSR-E and differ over vegetated areas (NDVI > 0.5) (Figure 9). Similarly, a 
decrease in correlation values between ASAR GM and AMSR-E was observed for NDVI > 0.5  
(see Figure 4d). In the case of GLDAS-NOAH, the RMSD values remain relatively stable for 
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NDVI values between 0.3 and 0.7. This discrepancy can be explained by the higher error of the 
AMSR-E when compared to active microwave sensor acquisitions over vegetated areas [36]. The 
mean RMSD is, however, identical (11%) for both maps and corresponds also to the mean RMSD 
at 5 km over Australia, reported in [26]. 

As expected, the R values remain low over desert areas due to the lack of soil moisture 
variability. On the other hand, the RMSD maps show the large variability of values in these regions 
(Figure 6). While in some desert areas, the RMSD remains relatively low (<8%), as expected, 
given the low soil moisture variations, the RMSD values can reach up to 20% to 35% elsewhere in 
the desert. Such extremely high values were not found over other continents [17,26] and, therefore, 
deserve more attention. 

Figure 8. (a) The root mean square difference (RMSD) between Advanced Synthetic 
Aperture Radar (ASAR) Global Monitoring (GM) and the Noah model from the Global 
Land Data Assimilation System (GLDAS-NOAH) Surface Soil Moisture (SSM); and  
(b) the RMSD between ASAR GM and Advanced Microwave Scanning Radiometer for 
Earth Observing System (AMSR-E) SSM. The grey color represents the masked areas 
(rain forests and urban areas) or areas with insufficient data coverage (below 50 data pairs). 
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Figure 9. The root mean square difference (RMSD) as a function of average 
Normalized Difference Vegetation Index for: (a) Advanced Synthetic Aperture Radar 
(ASAR) Global Monitoring (GM) vs. the Noah model from the Global Land Data 
Assimilation System (GLDAS-NOAH) Surface Soil Moisture (SSM); and (b) ASAR 
GM vs. Advanced Microwave Scanning Radiometer for Earth Observing System 
(AMSR-E) SSM. The solid line represents the median value; dashed lines represent the 
25th and 75th quartiles. 

 

To investigate the origin of the large RMSD variations over deserts, analyses of the backscatter 
dependence on the local incidence angle were performed. Generally, the change detection 
algorithm assumes a linear dependency of the backscatter on the local incidence angle and accounts 
for this by normalizing the backscatter to the local incidence angle of 30° using a regression line [17]. 
However, this assumption is hampered over desert areas with an RMSD over 20%. The observed 
limitations can be separated into two groups. Figure 10a represents a location with RMSD values 
over 20%. In this area, the backscatter from the descending and ascending orbits of the ASAR GM 
suffer a bias that devaluates the data normalization fit and adds an additional non-random error to 
the normalized data. The strong bias can be explained by the azimuthal effects that occur due to the 
spatial orientation of topographic features within the sensor footprint. A similar behavior is 
observable also over mountainous areas and has been demonstrated in the case of scatterometer 
acquisitions [39,40]. Usage of only ascending or descending orbit could overcome the problem; 
this would, however, further reduce the temporal resolution of the product. Next, the exceptionally 
high RMSD (23%) in Figure 10b is due to high backscatter occurring at an incidence angle of 
about 30°. This effect forms characteristic striping on the RMSD maps (i.e., around 30°N and 
10°E) and can be explained by resonant Bragg scattering. The surface ripples on sand dunes cause 
constructive interference of the coherent radar signal at certain incidence angles (dependent on the 
slope of the sand dune) [39]. Stripes of strongly enhanced backscatter values are clearly visible in 
SAR images over these areas (see Figure 10d). The locations of the illustrative points are shown at 
Figure 10c. 

Figure 11 shows the box-plot representations of RMSD for the USGS Land Use/Land Cover and 
HWSD soil type classes. The wide inter-quartile range of the non-soil classes, dunes and shifting 
sands (9% to 19%), indicates that these regions are connected with the above described geometrical 
distortions in the desert areas. Exceptionally high values can also be found over land cover class 
herbaceous wetland, with a median of 19%. This class is comprised of the Okavango Delta region 
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and the Ez Zeraf Game Reserve. Both areas are seasonally flooded. The resulting double-bounce effect 
from water surface and vegetation hampers the soil moisture retrieval and causes large RMSD values. 

Figure 10. The relationship between the measured backscatter and the local incidence 
angle illustrating problems in desert environments: (a) dependency of the backscatter 
value on the azimuth angle and, therefore, on orbit direction (ascending or descending);  
(b) Bragg scattering from sandy dunes at around a 30-degree incidence angle; (c) 
locations of the plotted Advanced Synthetic Aperture Radar (ASAR) Global 
Monitoring (GM) pixels; (d) resonant Bragg scattering effect on the ASAR GM 
measurements. 
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Figure 11. The box-plot representation of the root mean square difference (RMSD) 
results stratified by the Land Use/Land Cover system from U.S. Geological Survey 
Global Land Cover Characteristics (Top) and Harmonized World Soil Database soil 
types (Bottom). The boxes show the median, 25th and 75th percentiles; the lines 
represent minimum and maximum values after outlier removal (first and 99th 
percentile). The amount of 5-km Advanced Synthetic Aperture Radar (ASAR) pixels 
used for the evaluation for each class is shown in brackets behind the class name. (Left) 
ASAR Global Monitoring (GM) mode vs. Advanced Microwave Scanning Radiometer 
for Earth Observing System (AMSR-E) Surface Soil Moisture (SSM); (Right) ASAR 
GM vs. the Noah model from the Global Land Data Assimilation System (GLDAS-
NOAH) SSM. 

 

The RMSD results are influenced by the bias correction method applied. Recently, a study by 
Yilmaz et al. [41] suggested that using the triple collocation-based rescaling method results in an 
optimal solution, whereas regression techniques offer only approximations of this optimal solution. 
Hence, the investigation on the differences in RMSD maps using the triple collocation-based 
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matching technique could provide additional insights. Even further, triple collocation error 
assessments removes reference uncertainty and could thus refine the RMSD results. 

Apparently, the discussed factors (precipitation, NDVI, land cover class and soil type) have 
influence on the skill of the retrieval algorithm to represent soil moisture. However, these factors 
are also inter-correlated. Additional research is needed to assess the influence of the individual 
factors. This requires detailed combined analysis, such as principal component analysis. 

4.3. Mask for the ASAR GM SSM Dataset  

Motivated by the results of this study, a mask for the ASAR GM SSM product was created to 
distinguish the problematic areas. Across the continent, areas covered by surface water, rain forest 
and urban areas were masked according to the USGS GLCC Land Use/Land Cover System. Areas 
with a correlation below 0.2 between ASAR GM and GLDAS-NOAH SSM were masked, as 
well. Additionally, for areas with sufficient rainfall (south of 15°N), masking was based on the 
ASAR GM scaling layer. The scaling layer quantifies the temporal correlation between the 
backscatter intensities on the local (1 km) and the regional (25 km) scales [42]. The scaling layer 
masking is based on the concept of the temporal stability of soil moisture fields [22]. The 
assumption is that in the case of a low correlation (R2 < 0.3) between the local and regional 
backscatter intensities, the land cover and soil structure/texture characteristics influence the final 
ASAR GM product stronger than the temporal variation in soil moisture. However, in arid 
environments where the temporal dynamics of the soil moisture is strongly limited and, in some 
areas, backscatter intensities are strongly dependent on the azimuth angle and, thus, on the orbital 
direction of the satellite, the masking with the help of the scaling layer is not suitable. 

In case of scatterometer measurements, the estimated standard deviation (ESD) parameter was 
used to quantify the effect of azimuthal dependence. This parameter is described in detail in [27]. 
The areas of high (>0.4 dB) ESD correspond to the high RMSD values between ASAR GM SSM 
and the reference datasets in the arid regions. Therefore, the mask based on the ERS scatterometer 
measurements was created to mask the areas with geometrical distortions in arid areas (north of  
15°N). An example of the resulting masked surface soil moisture maps are shown in Figure 12. 

4.4. Comparison with ASAR WS SSM 

Due to the radiometric resolution of about 1.2 dB, the noise in the ASAR GM SSM product is 
relatively high. The averaging of the product to approximately 3 to 10 km reduces the noise [16–18]; 
the advantage of high (1 km) resolution is, however, lost. Data with a higher radiometric resolution 
can provide comparable results to the aggregated 5-km product, also at 1-km spatial resolution. 
This was demonstrated over Zambezi catchment by comparing 1-km aggregated ASAR WS data 
with 1-km and 5-km aggregated ASAR GM data. Figure 13 shows box-plot representations of R 
values between ASAR products and GLDAS-NOAH. Overall, at 89% of the points, the correlation 
between ASAR and GLDAS-NOAH SSM is significantly improved for ASAR WS when compared 
to 1-km ASAR GM. The significance level was set to 0.05 using the z-test and Fishers R to z 
transformation [43]. The average R improvement equals 0.22. Clearly, the change detection 



529 
 

 

algorithm fails to deliver reliable soil moisture retrievals over the herbaceous wetland and barren or 
sparsely vegetated land cover classes, both in the case of GM, as well as WS mode. For other land 
cover classes, a significant improvement of the correlation of approximately 0.2 can be observed when 
using WS mode or 5-km aggregated GM mode measurements instead of the 1-km GM SSM dataset. 

Figure 12. The 1-km Advanced Synthetic Aperture Radar (ASAR) Global Monitoring 
(GM) surface soil moisture monthly composites for (a) January and (b) October 2011. 
The grey color represents the masked areas. 

 

These results indicate that the quality of the soil moisture estimates derived with the TU Wien 
method can be significantly improved over some landscapes with the use of data with higher 
radiometric resolution. This is encouraging considering that the Sentinel-1 sensor should provide a 
three-fold improvement in radiometric resolution compared to ASAR WS [44]. 

4.5. Limitations of the Evaluation Methodology 

The limitations of our study should be reiterated, as they reveal the potential areas for further 
research. Due to the unavailability of another high or medium resolution SSM dataset over the 
entire African continent, coarse resolution reference datasets were used for the evaluation. The 
spatial sampling error together with the uncertainties in the reference data will be included in the 
bivariate error measures [26]. Furthermore, the use of linear matching using the minimal least 
squares distance is expected to impact the final RMSD estimates. To overcome the later, an 
investigation of more complex matching techniques, such as the triple-collocation-based matching 
technique, is recommended [41]. Even further, triple-collocation error assessments remove reference 
uncertainty and are therefore expected to refine the RMSD results. 

An important limitation of the ASAR SSM product is the relatively low and irregular temporal 
resolution (typically four to seven days in the case of ASAR GM, but dependent also on the sensor 
acquisition plan). Especially in the case of SSM anomalies, the spatial differences in temporal 
resolution are visible in the correlation results. The areas with a lower number of measurements 
within the time-window correspond to the areas of lower correlation results (i.e., the stripe around 
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10°N and 25°E in Figure 3c). The computation of SSM anomalies as the difference between the 
absolute soil moisture value and the seasonal cycle of SSM averaged over several years could 
reduce this effect.  

Figure 13. The box-plot representation of the Pearson correlation (R) results stratified 
by the Land Use/Land Cover system from U.S. Geological Survey Global Land Cover 
Characteristics over Zambezi catchment in southern Africa. The boxes show the 
median, 25th and 75th percentiles; the lines represent minimum and maximum values 
after outlier removal (first and 99th percentile). The amount of 5-km Advanced Synthetic 
Aperture Radar (ASAR) pixels used for the evaluation for each class is shown in 
brackets behind the class name. The R values were computed for the Noah model from 
the Global Land Data Assimilation System (GLDAS-NOAH). (a) One-kilometer 
resolution ASAR Global Monitoring (GM) Surface Soil Moisture (SSM); (b) 5-km 
aggregated ASAR GM SSM; and (c) 1-km aggregated ASAR Wide Swath (WS) SSM. 
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Finally, the influence of various factors (precipitation, NDVI, land cover class and soil type) on 
the TU Wien algorithm’s ability to retrieve surface soil moisture estimates was presented. These 
factors are however also inter-correlated, and the influence of the individual factors cannot be 
assessed without detailed combined analysis, such as principal component analysis. 

5. Conclusions 

The high resolution soil moisture product has the potential to contribute to a number of 
applications, such as hydrological or runoff modeling. However, the understanding of the quality 
and limitations of the product is a vital precondition for its usage. This work presents the 
continental-wide evaluation of the Advanced Synthetic Aperture Radar (ASAR) Global Monitoring 
(GM) mode Surface Soil Moisture (SSM) product developed at TU Vienna using the change 
detection algorithm over African continent. The study is unique, as it presents the first long-term 
and large-scale evaluation of the soil moisture dataset derived from the SAR data over Africa. The 
results were stratified by the precipitation amount, vegetation cover, land cover classes and soil 
types and provide insights into the product performance over various environments. Based on the 
evaluation results, a new mask for the African continent was introduced, covering the areas where 
the algorithm does not provide reliable SSM estimates. 

A comparison with coarse resolution SSM datasets from Advanced Microwave Scanning 
Radiometer for Earth Observing System (AMSR-E) and the Noah land surface model from the Global 
Land Data Assimilation system (GLDAS-NOAH) proved the ability of the ASAR GM SSM product to 
demonstrate the temporal variability of the soil moisture over areas with sufficient rainfall (>250 
mm/year) and low to medium density vegetation (a mean Normalized Difference Vegetation Index 
of 0.2 to 0.6). Correlations over 0.6 were found, i.e., in savannas or croplands, whereas arid regions 
or wetlands showed low or negative correlations, down to 0.7. Furthermore, differences in 
performance over various soil types were presented, revealing lower correlations over some soil 
types (i.e., Leptosols, Calcisols) within the same land cover class and precipitation thresholds. 

Three distinct problems in the ASAR GM SSM algorithm were detected during the evaluation 
process, all of which were located in the arid regions: (i) an inverse relationship between ASAR 
GM backscatter and soil moisture, causing negative correlation values; (ii) biases between the 
backscatter from the descending and ascending orbits; and (iii) a distinct bias in the backscatter 
around a 30° local incidence angle. While the first phenomenon could be explained by the extreme 
behavior of backscatter over very dry soils, the other two problems could be explained by azimuthal 
anisotropy effects and Bragg scattering. Further investigation of these problems is expected to bring 
improvements to soil moisture products based on ASAR GM, scatterometer, as well as future  
Sentinel-1 data. 

At the time of the writing of this publication, the Sentinel-1 sensor is in the commissioning 
phase. The transfer of the change detection algorithm to Sentinel-1 is therefore foreseen. Given the 
significantly improved radiometric resolution of Sentinel-1, soil moisture products derived from 
Sentinel-1 are expected to be of considerably better quality when compared to the ASAR GM SSM 
products. The impact of enhanced radiometric resolution on the 1-km SSM product was evaluated 
in this work over Zambezi catchment in Southern Africa using 1-km ASAR Wide Swath (WS) 
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SSM. Significantly higher correlations (improvements of ~0.2) were obtained over most landscapes 
using WS data instead of GM data. Further research is required to quantify the robustness and 
possible areas of improvements of the TU Wien method applied to low-noise SAR data, such as 
those that will become available through the Sentinel-1 mission. 
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